Compare commits

..

5 Commits

Author SHA1 Message Date
93d538ecc6 Checking properly source of the file for metadata, with instanceof 2026-02-11 16:23:27 +03:00
f5659675ec - main feat: adaptation for async enrichment
- added file_type, this will hold the "таблица", "презентация" and so on types
- file source metadata is now taken either from local source or yandex disk.
2026-02-11 15:46:54 +03:00
7b52887558 Enrichment now processed via chunks. 2 documents -> into the vector storage. Also geussing source from the file extension 2026-02-11 11:23:50 +03:00
1e6ab247b9 Phase 12 done... loading via adaptive collection, yadisk or local 2026-02-10 22:19:27 +03:00
e9dd28ad55 Prep for Phase 12 of loading files for enrichment through the adaptive collections 2026-02-10 21:42:59 +03:00
8 changed files with 440 additions and 186 deletions

Binary file not shown.

View File

@@ -7,3 +7,10 @@ QDRANT_HOST=HOST
QDRANT_REST_PORT=PORT
QDRANT_GRPC_PORT=PORT
YADISK_TOKEN=TOKEN
ENRICHMENT_SOURCE=local/yadisk
ENRICHMENT_LOCAL_PATH=path
ENRICHMENT_YADISK_PATH=path
ENRICHMENT_PROCESSING_MODE=async/sync
ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT=5
ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS=4
ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS=4

View File

@@ -73,3 +73,31 @@ Chosen data folder: relatve ./../../../data - from the current folder
- [x] Write tests for local filesystem implementation, using test/samples folder filled with files and directories for testing of iteration and recursivess
- [x] Create Yandex Disk implementation of the Adaptive Collection. Constructor should have requirement for TOKEN for Yandex Disk.
- [x] Write tests for Yandex Disk implementation, using folder "Общая/Информация". .env.test has YADISK_TOKEN variable for connecting. While testing log output of found files during iterating. If test fails at this step, leave to manual fixing, and this step can be marked as done.
# Phase 12 (using local file system or yandex disk)
During enrichment, we should use adaptive collection from the helpers, for loading documents. We should not use directly local filesystem, but use adaptive collection as a wrapper.
- [x] Adaptive file in helper now has filename in it, so tests should be adjusted for this
- [x] Add conditional usage of adaptive collection in the enrichment stage. .env has now variable ENRICHMENT_SOURCE with 2 possible values: yadisk, local
- [x] With local source, use env variable for local filesystem adaptive collection: ENRICHMENT_LOCAL_PATH
- [x] With yadisk source, use env variable for YADISK_TOKEN for token for auth within Yandex Disk, ENRICHMENT_YADISK_PATH for path on the Yandex Disk system
- [x] We still will need filetypes that we will need to skip, so while iterating over files we need to check their extension and skip them.
- [x] Adaptive files has filename in them, so it should be used when extracting metadata
# Phase 13 (async processing of files)
During this Phase we create asynchronous process of enrichment, utilizing async/await
- [x] Prepare enrichment to be async process, so adjust neede libraries, etc. that are needed to be processed.
- [x] Create queue for adaptive files. It will store adaptive files that needs to be processed
- [x] Create queue for documents that were taken from the adaptive files.
- [x] Create function that iterates through the adaptive collection and adds it to the adaptive files queue ADAPTIVE_FILES_QUEUE. Let's call it insert_adaptive_files_queue
- [x] Create function that takes adaptive file from the adaptive files queue (PROCESSED_DOCUMENTS_QUEUE) and processed it, by splitting into chunks of documents. Let's call it process_adaptive_files_queue
- [x] Create function that takes chunk of documents from the processed documents queue, and sends them into the vector storage. It marks document, of which these chunks, as processed in the local database (existing feature adapted here. Let's call it upload_processed_documents_from_queue
- [x] Utilize Python threading machinery, to create threads for several our functions. There will be environment variables: ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT (default 5), ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS (default 4), ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS (default 4)
- [x] Function insert_adaptive_files_queue would not be in a thread. It will iterate through adaptive collection and wait while queue has less than ENRICHMENT_ADAPTIVE_FILE_LOAD_QUEUE_LIMIT.
- [x] Function process_adaptive_files_queue should be started in number of threads (defined in .env ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS)
- [x] Function upload_processed_documents_from_queue should be started in number of threads (defined in .env ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS)
- [x] Program should control threads. Function insert_adaptive_files_queue, after adaptive collection ends, then should wait untill all theads finish. What does finish mean? It means when our insert_adaptive_files_queue function realizes that there is no adaptive files left in collection, it marks shared variable between threads, that collection finished. When our other functions in threads sees that this variable became true - they deplete queue and do not go to the next loop to wait for new items in queue, and just finish. This would eventually finish the program. Each thread finishes, and main program too as usual after processing all of things.

View File

@@ -37,15 +37,16 @@ def ping():
name="enrich",
help="Load documents from data directory and store in vector database",
)
@click.option("--data-dir", default="../../../data", help="Path to the data directory")
@click.option(
"--collection-name",
default="documents_langchain",
help="Name of the vector store collection",
)
def enrich(data_dir, collection_name):
def enrich(collection_name):
"""Load documents from data directory and store in vector database"""
logger.info(f"Starting enrichment process for directory: {data_dir}")
logger.info(
f"Starting enrichment process. Enrichment source: {os.getenv('ENRICHMENT_SOURCE')}"
)
try:
# Import here to avoid circular dependencies
@@ -56,7 +57,7 @@ def enrich(data_dir, collection_name):
vector_store = initialize_vector_store(collection_name=collection_name)
# Run enrichment process
run_enrichment_process(vector_store, data_dir=data_dir)
run_enrichment_process(vector_store)
logger.info("Enrichment process completed successfully!")
click.echo("Documents have been successfully loaded into the vector store.")

View File

@@ -1,13 +1,21 @@
"""Document enrichment module for loading documents into vector storage."""
import os
import hashlib
import os
import queue
import threading
from pathlib import Path
from typing import List, Dict, Any
from typing import List, Optional, Tuple
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from loguru import logger
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
# Dynamically import other loaders to handle optional dependencies
try:
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
@@ -33,37 +41,92 @@ try:
from langchain_community.document_loaders import UnstructuredODTLoader
except ImportError:
UnstructuredODTLoader = None
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from loguru import logger
import sqlite3
from helpers import extract_russian_event_names, extract_years_from_text
from helpers import (
LocalFilesystemAdaptiveCollection,
YandexDiskAdaptiveCollection,
YandexDiskAdaptiveFile,
_AdaptiveCollection,
_AdaptiveFile,
extract_russian_event_names,
extract_years_from_text,
)
# Load environment variables
load_dotenv()
# Define the path to the data directory
DATA_DIR = Path("../../../data").resolve()
DB_PATH = Path("document_tracking.db").resolve()
ENRICHMENT_SOURCE = os.getenv("ENRICHMENT_SOURCE", "local").lower()
ENRICHMENT_LOCAL_PATH = os.getenv("ENRICHMENT_LOCAL_PATH")
ENRICHMENT_YADISK_PATH = os.getenv("ENRICHMENT_YADISK_PATH")
YADISK_TOKEN = os.getenv("YADISK_TOKEN")
ENRICHMENT_PROCESSING_MODE = os.getenv("ENRICHMENT_PROCESSING_MODE", "async").lower()
ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT = int(
os.getenv("ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT", "5")
)
ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS = int(
os.getenv("ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS", "4")
)
ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS = int(
os.getenv("ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS", "4")
)
SUPPORTED_EXTENSIONS = {
".pdf",
".docx",
".doc",
".pptx",
".xlsx",
".xls",
".jpg",
".jpeg",
".png",
".gif",
".bmp",
".tiff",
".webp",
".odt",
".txt", # this one is obvious but was unexpected to see in data lol
}
Base = declarative_base()
class ProcessedDocument(Base):
"""Database model for tracking processed documents."""
__tablename__ = "processed_documents"
id = Column(Integer, primary_key=True)
file_path = Column(String, unique=True, nullable=False)
file_hash = Column(String, nullable=False)
# to guess the filetype in russian language, for searching it
def try_guess_file_type(extension: str) -> str:
if extension in [".xlsx", "xls"]:
return "таблица"
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
return "изображение"
elif extension in [".pptx"]:
return "презентация"
else:
return "документ"
def identify_adaptive_file_source(adaptive_file: _AdaptiveFile) -> str:
if isinstance(adaptive_file, YandexDiskAdaptiveFile):
return "Яндекс Диск"
else:
return "Локальный Файл"
class DocumentEnricher:
"""Class responsible for enriching documents and loading them to vector storage."""
def __init__(self, vector_store):
self.vector_store = vector_store
self.text_splitter = RecursiveCharacterTextSplitter(
@@ -71,219 +134,357 @@ class DocumentEnricher:
chunk_overlap=200,
length_function=len,
)
# In sync mode we force minimal concurrency values.
if ENRICHMENT_PROCESSING_MODE == "sync":
self.adaptive_files_queue_limit = 1
self.file_process_threads_count = 1
self.document_upload_threads_count = 1
else:
self.adaptive_files_queue_limit = max(
1, ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT
)
self.file_process_threads_count = max(
1, ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS
)
self.document_upload_threads_count = max(
1, ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS
)
# Phase 13 queues
self.ADAPTIVE_FILES_QUEUE: queue.Queue = queue.Queue(
maxsize=self.adaptive_files_queue_limit
)
self.PROCESSED_DOCUMENTS_QUEUE: queue.Queue = queue.Queue(
maxsize=max(1, self.adaptive_files_queue_limit * 2)
)
# Shared state for thread lifecycle
self.collection_finished = threading.Event()
self.processing_finished = threading.Event()
# Initialize database for tracking processed documents
self._init_db()
def _init_db(self):
"""Initialize the SQLite database for tracking processed documents."""
self.engine = create_engine(f"sqlite:///{DB_PATH}")
Base.metadata.create_all(self.engine)
Session = sessionmaker(bind=self.engine)
self.session = Session()
self.SessionLocal = sessionmaker(bind=self.engine)
def _get_file_hash(self, file_path: str) -> str:
"""Calculate SHA256 hash of a file."""
hash_sha256 = hashlib.sha256()
with open(file_path, "rb") as f:
# Read file in chunks to handle large files
for chunk in iter(lambda: f.read(4096), b""):
with open(file_path, "rb") as file_handle:
for chunk in iter(lambda: file_handle.read(4096), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def _is_document_processed(self, file_path: str) -> bool:
"""Check if a document has already been processed."""
file_hash = self._get_file_hash(file_path)
existing = self.session.query(ProcessedDocument).filter_by(
file_hash=file_hash
).first()
return existing is not None
def _mark_document_processed(self, file_path: str):
def _is_document_hash_processed(self, file_hash: str) -> bool:
"""Check if a document hash has already been processed."""
session = self.SessionLocal()
try:
existing = (
session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
)
return existing is not None
finally:
session.close()
def _mark_document_processed(self, file_identifier: str, file_hash: str):
"""Mark a document as processed in the database."""
file_hash = self._get_file_hash(file_path)
doc_record = ProcessedDocument(
file_path=file_path,
file_hash=file_hash
)
self.session.add(doc_record)
self.session.commit()
session = self.SessionLocal()
try:
existing = (
session.query(ProcessedDocument)
.filter_by(file_path=file_identifier)
.first()
)
if existing is not None:
existing.file_hash = file_hash
else:
session.add(
ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
)
session.commit()
finally:
session.close()
def _get_loader_for_extension(self, file_path: str):
"""Get the appropriate loader for a given file extension."""
ext = Path(file_path).suffix.lower()
if ext == ".pdf":
return PyPDFLoader(file_path)
elif ext in [".docx", ".doc"]:
if ext in [".docx", ".doc"]:
if UnstructuredWordDocumentLoader is None:
logger.warning(f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping.")
logger.warning(
f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping."
)
return None
return UnstructuredWordDocumentLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext == ".pptx":
return UnstructuredWordDocumentLoader(
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext == ".pptx":
if UnstructuredPowerPointLoader is None:
logger.warning(f"UnstructuredPowerPointLoader not available for {file_path}. Skipping.")
logger.warning(
f"UnstructuredPowerPointLoader not available for {file_path}. Skipping."
)
return None
return UnstructuredPowerPointLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext in [".xlsx", ".xls"]:
return UnstructuredPowerPointLoader(
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext in [".xlsx", ".xls"]:
if UnstructuredExcelLoader is None:
logger.warning(f"UnstructuredExcelLoader not available for {file_path}. Skipping.")
logger.warning(
f"UnstructuredExcelLoader not available for {file_path}. Skipping."
)
return None
return UnstructuredExcelLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
return UnstructuredExcelLoader(
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
if UnstructuredImageLoader is None:
logger.warning(f"UnstructuredImageLoader not available for {file_path}. Skipping.")
logger.warning(
f"UnstructuredImageLoader not available for {file_path}. Skipping."
)
return None
# Use OCR strategy for images to extract text
return UnstructuredImageLoader(file_path, **{"strategy": "ocr_only", "languages": ["rus"]})
elif ext == ".odt":
return UnstructuredImageLoader(
file_path, **{"strategy": "ocr_only", "languages": ["rus"]}
)
if ext == ".odt":
if UnstructuredODTLoader is None:
logger.warning(f"UnstructuredODTLoader not available for {file_path}. Skipping.")
logger.warning(
f"UnstructuredODTLoader not available for {file_path}. Skipping."
)
return None
return UnstructuredODTLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
else:
# For text files and unsupported formats, try to load as text
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return None, content # Return content directly for text processing
except UnicodeDecodeError:
logger.warning(f"Could not decode file as text: {file_path}")
return None, None
def load_and_split_documents(self, file_paths: List[str]) -> List[Document]:
"""Load documents from file paths and split them appropriately."""
all_docs = []
return UnstructuredODTLoader(
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
return None
for file_path in file_paths:
if self._is_document_processed(file_path):
logger.info(f"Skipping already processed document: {file_path}")
continue
def _load_one_adaptive_file(
self, adaptive_file: _AdaptiveFile
) -> Tuple[List[Document], Optional[Tuple[str, str]]]:
"""Load and split one adaptive file by using its local working callback."""
loaded_docs: List[Document] = []
processed_record: Optional[Tuple[str, str]] = None
source_identifier = identify_adaptive_file_source(adaptive_file)
extension = adaptive_file.extension.lower()
file_type = try_guess_file_type(extension)
logger.info(f"Processing document: {file_path}")
def process_local_file(local_file_path: str):
nonlocal loaded_docs, processed_record
# Get the appropriate loader for the file extension
loader = self._get_loader_for_extension(file_path)
file_hash = self._get_file_hash(local_file_path)
if self._is_document_hash_processed(file_hash):
logger.info(
f"SKIPPING already processed document hash for: {source_identifier}"
)
return
else:
logger.info("Document is not processed! Doing it")
loader = self._get_loader_for_extension(local_file_path)
if loader is None:
# For unsupported formats that we tried to load as text
logger.warning(f"No loader available for file: {source_identifier}")
return
docs = loader.load()
for doc in docs:
doc.metadata["file_type"] = file_type
doc.metadata["source"] = source_identifier
doc.metadata["filename"] = adaptive_file.filename
doc.metadata["file_path"] = source_identifier
doc.metadata["file_size"] = os.path.getsize(local_file_path)
doc.metadata["file_extension"] = extension
if "page" in doc.metadata:
doc.metadata["page_number"] = doc.metadata["page"]
split_docs = self.text_splitter.split_documents(docs)
for chunk in split_docs:
chunk.metadata["years"] = extract_years_from_text(chunk.page_content)
chunk.metadata["events"] = extract_russian_event_names(
chunk.page_content
)
loaded_docs = split_docs
processed_record = (source_identifier, file_hash)
adaptive_file.work_with_file_locally(process_local_file)
return loaded_docs, processed_record
# Phase 13 API: inserts adaptive files into ADAPTIVE_FILES_QUEUE
def insert_adaptive_files_queue(
self, adaptive_collection: _AdaptiveCollection, recursive: bool = True
):
for adaptive_file in adaptive_collection.iterate(recursive=recursive):
if adaptive_file.extension.lower() not in SUPPORTED_EXTENSIONS:
logger.debug(
f"Skipping unsupported file extension for {adaptive_file.filename}: {adaptive_file.extension}"
)
continue
self.ADAPTIVE_FILES_QUEUE.put(adaptive_file)
logger.debug("ADAPTIVE COLLECTION DEPLETED!")
self.collection_finished.set()
# Phase 13 API: reads adaptive files and writes processed docs into PROCESSED_DOCUMENTS_QUEUE
def process_adaptive_files_queue(self):
while True:
try:
adaptive_file = self.ADAPTIVE_FILES_QUEUE.get(timeout=0.2)
except queue.Empty:
if self.collection_finished.is_set():
return
continue
try:
# Load the document(s)
docs = loader.load()
split_docs, processed_record = self._load_one_adaptive_file(
adaptive_file
)
if split_docs:
self.PROCESSED_DOCUMENTS_QUEUE.put((split_docs, processed_record))
except Exception as error:
logger.error(f"Error processing {adaptive_file.filename}: {error}")
finally:
self.ADAPTIVE_FILES_QUEUE.task_done()
# Add metadata to each document
for doc in docs:
# Extract metadata from the original file
doc.metadata["source"] = file_path
doc.metadata["filename"] = Path(file_path).name
doc.metadata["file_path"] = file_path
doc.metadata["file_size"] = os.path.getsize(file_path)
# Add page number if available in original metadata
if "page" in doc.metadata:
doc.metadata["page_number"] = doc.metadata["page"]
# Add file extension as metadata
doc.metadata["file_extension"] = Path(file_path).suffix
# Split documents if they are too large
split_docs = self.text_splitter.split_documents(docs)
# Extract additional metadata from each chunk.
for chunk in split_docs:
years = extract_years_from_text(chunk.page_content)
events = extract_russian_event_names(chunk.page_content)
chunk.metadata["years"] = years
chunk.metadata["events"] = events
# Add to the collection
all_docs.extend(split_docs)
except Exception as e:
logger.error(f"Error processing {file_path}: {str(e)}")
# Phase 13 API: uploads chunked docs and marks file processed
def upload_processed_documents_from_queue(self):
while True:
try:
payload = self.PROCESSED_DOCUMENTS_QUEUE.get(timeout=0.2)
except queue.Empty:
if self.processing_finished.is_set():
return
continue
return all_docs
def enrich_and_store(self, file_paths: List[str]):
try:
documents, processed_record = payload
self.vector_store.add_documents(documents)
if processed_record is not None:
self._mark_document_processed(
processed_record[0], processed_record[1]
)
except Exception as error:
logger.error(
f"Error uploading processed documents: {error}. But swallowing error. NOT raising."
)
finally:
self.PROCESSED_DOCUMENTS_QUEUE.task_done()
def _run_threaded_pipeline(self, adaptive_collection: _AdaptiveCollection):
"""Run Phase 13 queue/thread pipeline."""
process_threads = [
threading.Thread(
target=self.process_adaptive_files_queue,
name=f"adaptive-file-processor-{index}",
daemon=True,
)
for index in range(self.file_process_threads_count)
]
upload_threads = [
threading.Thread(
target=self.upload_processed_documents_from_queue,
name=f"document-uploader-{index}",
daemon=True,
)
for index in range(self.document_upload_threads_count)
]
for thread in process_threads:
thread.start()
for thread in upload_threads:
thread.start()
# This one intentionally runs on main thread per Phase 13 requirement.
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
# Wait file queue completion and processing threads end.
self.ADAPTIVE_FILES_QUEUE.join()
for thread in process_threads:
thread.join()
# Signal upload workers no more payload is expected.
self.processing_finished.set()
# Wait upload completion and upload threads end.
self.PROCESSED_DOCUMENTS_QUEUE.join()
for thread in upload_threads:
thread.join()
def _run_sync_pipeline(self, adaptive_collection: _AdaptiveCollection):
"""Sequential pipeline for sync mode."""
logger.info("Running enrichment in sync mode")
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
self.process_adaptive_files_queue()
self.processing_finished.set()
self.upload_processed_documents_from_queue()
def enrich_and_store(self, adaptive_collection: _AdaptiveCollection):
"""Load, enrich, and store documents in the vector store."""
logger.info(f"Starting enrichment process for {len(file_paths)} files...")
logger.info("Starting enrichment process...")
# Load and split documents
documents = self.load_and_split_documents(file_paths)
if not documents:
logger.info("No new documents to process.")
if ENRICHMENT_PROCESSING_MODE == "sync":
logger.info("Document enrichment process starting in SYNC mode")
self._run_sync_pipeline(adaptive_collection)
return
logger.info(f"Loaded and split {len(documents)} document chunks, adding to vector store...")
# Add documents to vector store
try:
self.vector_store.add_documents(documents)
# Only mark documents as processed after successful insertion to vector store
processed_file_paths = set()
for doc in documents:
if 'source' in doc.metadata:
processed_file_paths.add(doc.metadata['source'])
for file_path in processed_file_paths:
self._mark_document_processed(file_path)
logger.info(f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_paths)} files as processed.")
except Exception as e:
logger.error(f"Error adding documents to vector store: {str(e)}")
raise
logger.info("Document enrichment process starting in ASYNC/THREAD mode")
self._run_threaded_pipeline(adaptive_collection)
def get_all_documents_from_data_dir(data_dir: str = str(DATA_DIR)) -> List[str]:
"""Get all supported document file paths from the data directory."""
supported_extensions = {
'.pdf', '.docx', '.doc', '.pptx', '.xlsx', '.xls',
'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff',
'.webp', '.odt'
}
file_paths = []
for root, dirs, files in os.walk(data_dir):
for file in files:
if Path(file).suffix.lower() in supported_extensions:
file_paths.append(os.path.join(root, file))
return file_paths
def get_enrichment_adaptive_collection(
data_dir: str = str(DATA_DIR),
) -> _AdaptiveCollection:
"""Create adaptive collection based on environment source configuration."""
source = ENRICHMENT_SOURCE
if source == "local":
local_path = ENRICHMENT_LOCAL_PATH or data_dir
logger.info(f"Using local adaptive collection from path: {local_path}")
return LocalFilesystemAdaptiveCollection(local_path)
if source == "yadisk":
if not YADISK_TOKEN:
raise ValueError("YADISK_TOKEN must be set when ENRICHMENT_SOURCE=yadisk")
if not ENRICHMENT_YADISK_PATH:
raise ValueError(
"ENRICHMENT_YADISK_PATH must be set when ENRICHMENT_SOURCE=yadisk"
)
logger.info(
f"Using Yandex Disk adaptive collection from path: {ENRICHMENT_YADISK_PATH}"
)
return YandexDiskAdaptiveCollection(
token=YADISK_TOKEN,
base_dir=ENRICHMENT_YADISK_PATH,
)
raise ValueError(
f"Unsupported ENRICHMENT_SOURCE='{source}'. Allowed values: local, yadisk"
)
def run_enrichment_process(vector_store, data_dir: str = str(DATA_DIR)):
"""Run the full enrichment process."""
logger.info(f"Starting document enrichment from directory: {data_dir}")
# Get all supported documents from the data directory
file_paths = get_all_documents_from_data_dir(data_dir)
if not file_paths:
logger.warning(f"No supported documents found in {data_dir}")
return
logger.info(f"Found {len(file_paths)} documents to process")
logger.info("Starting document enrichment process")
adaptive_collection = get_enrichment_adaptive_collection(data_dir=data_dir)
# Initialize the document enricher
enricher = DocumentEnricher(vector_store)
# Run the enrichment process
enricher.enrich_and_store(file_paths)
enricher.enrich_and_store(adaptive_collection)
logger.info("Document enrichment process completed!")
if __name__ == "__main__":
# Example usage
from vector_storage import initialize_vector_store
# Initialize vector store
vector_store = initialize_vector_store()
# Run enrichment process
run_enrichment_process(vector_store)

View File

@@ -115,11 +115,11 @@ def extract_russian_event_names(text: str) -> List[str]:
class _AdaptiveFile(ABC):
extension: str # Format: .jpg
local_path: str
filename: str
def __init__(self, extension: str, local_path: str):
def __init__(self, filename: str, extension: str):
self.filename = filename
self.extension = extension
self.local_path = local_path
# This method allows to work with file locally, and lambda should be provided for this.
# Why separate method? For possible cleanup after work is done. And to download file, if needed
@@ -137,6 +137,12 @@ class _AdaptiveCollection(ABC):
class LocalFilesystemAdaptiveFile(_AdaptiveFile):
local_path: str
def __init__(self, filename: str, extension: str, local_path: str):
super().__init__(filename, extension)
self.local_path = local_path
def work_with_file_locally(self, func: Callable[[str], None]):
func(self.local_path)
@@ -153,7 +159,8 @@ class LocalFilesystemAdaptiveCollection(_AdaptiveCollection):
for root, dirs, files in os.walk(self.base_dir):
for file in files:
full_path = os.path.join(root, file)
yield LocalFilesystemAdaptiveFile(Path(full_path).suffix, full_path)
p = Path(full_path)
yield LocalFilesystemAdaptiveFile(p.name, p.suffix, full_path)
if not recursive:
break
@@ -162,16 +169,19 @@ class LocalFilesystemAdaptiveCollection(_AdaptiveCollection):
class YandexDiskAdaptiveFile(_AdaptiveFile):
"""Adaptive file representation for Yandex Disk resources."""
def __init__(self, extension: str, local_path: str, token: str):
super().__init__(extension, local_path)
remote_path: str
def __init__(self, filename: str, extension: str, remote_path: str, token: str):
super().__init__(filename, extension)
self.token = token
self.remote_path = remote_path
def _download_to_temp_file(self) -> str:
headers = {"Authorization": f"OAuth {self.token}"}
response = requests.get(
"https://cloud-api.yandex.net/v1/disk/resources/download",
headers=headers,
params={"path": self.local_path},
params={"path": self.remote_path},
timeout=30,
)
response.raise_for_status()
@@ -180,7 +190,8 @@ class YandexDiskAdaptiveFile(_AdaptiveFile):
file_response = requests.get(href, timeout=120)
file_response.raise_for_status()
suffix = Path(self.local_path).suffix
p = Path(self.remote_path)
suffix = p.suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
temp_file.write(file_response.content)
return temp_file.name
@@ -249,7 +260,8 @@ class YandexDiskAdaptiveCollection(_AdaptiveCollection):
if root_info.get("type") == "file":
path = root_info["path"]
logger.info(f"Found file on Yandex Disk: {path}")
yield YandexDiskAdaptiveFile(Path(path).suffix, path, self.token)
p = Path(path)
yield YandexDiskAdaptiveFile(p.name, p.suffix, path, self.token)
return
directories = [root_path]
@@ -257,11 +269,12 @@ class YandexDiskAdaptiveCollection(_AdaptiveCollection):
current_dir = directories.pop(0)
for item in self._iter_children(current_dir):
item_type = item.get("type")
item_path = item.get("path")
item_path = str(item.get("path"))
if item_type == "file":
logger.info(f"Found file on Yandex Disk: {item_path}")
p = Path(item_path)
yield YandexDiskAdaptiveFile(
Path(item_path).suffix, item_path, self.token
p.name, p.suffix, item_path, self.token
)
elif recursive and item_type == "dir":
directories.append(item_path)

View File

@@ -13,7 +13,7 @@ class TestLocalFilesystemAdaptiveCollection(unittest.TestCase):
collection = LocalFilesystemAdaptiveCollection(str(self.samples_dir))
files = list(collection.iterate(recursive=False))
file_names = sorted(Path(file.local_path).name for file in files)
file_names = sorted(file.filename for file in files)
self.assertEqual(file_names, ["root.txt"])
self.assertTrue(all(isinstance(file, LocalFilesystemAdaptiveFile) for file in files))
@@ -33,7 +33,9 @@ class TestLocalFilesystemAdaptiveCollection(unittest.TestCase):
def test_work_with_file_locally_provides_existing_path(self):
target_path = self.samples_dir / "root.txt"
adaptive_file = LocalFilesystemAdaptiveFile(target_path.suffix, str(target_path))
adaptive_file = LocalFilesystemAdaptiveFile(
target_path.name, target_path.suffix, str(target_path)
)
observed = {}
@@ -44,6 +46,7 @@ class TestLocalFilesystemAdaptiveCollection(unittest.TestCase):
adaptive_file.work_with_file_locally(callback)
self.assertEqual(adaptive_file.filename, "root.txt")
self.assertEqual(observed["path"], str(target_path))
self.assertEqual(observed["content"], "root file")

View File

@@ -31,6 +31,7 @@ class TestYandexDiskAdaptiveCollection(unittest.TestCase):
self.skipTest(f"Yandex Disk request failed and needs manual verification: {exc}")
for item in files:
self.assertTrue(item.filename)
logger.info(f"Yandex file found during test iteration: {item.local_path}")
self.assertIsInstance(files, list)