""" Document enrichment module for the RAG solution. This module handles loading documents from the data directory, processing them with appropriate loaders, splitting them into chunks, and storing them in the vector database with proper metadata. """ import os import hashlib from pathlib import Path from typing import List, Dict, Any from datetime import datetime import sqlite3 from loguru import logger from llama_index.core import SimpleDirectoryReader, Document from llama_index.core.node_parser import SentenceSplitter, CodeSplitter # Removed unused import from vector_storage import get_vector_store_and_index class DocumentTracker: """Class to handle tracking of processed documents to avoid re-processing.""" def __init__(self, db_path: str = "document_tracking.db"): self.db_path = db_path self._init_db() def _init_db(self): """Initialize the SQLite database for document tracking.""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() # Create table for tracking processed documents cursor.execute(''' CREATE TABLE IF NOT EXISTS processed_documents ( id INTEGER PRIMARY KEY AUTOINCREMENT, filename TEXT UNIQUE NOT NULL, filepath TEXT NOT NULL, checksum TEXT NOT NULL, processed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, metadata_json TEXT ) ''') conn.commit() conn.close() logger.info(f"Document tracker initialized with database: {self.db_path}") def is_document_processed(self, filepath: str) -> bool: """Check if a document has already been processed.""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() # Calculate checksum of the file checksum = self._calculate_checksum(filepath) cursor.execute( "SELECT COUNT(*) FROM processed_documents WHERE filepath = ? AND checksum = ?", (filepath, checksum) ) count = cursor.fetchone()[0] conn.close() return count > 0 def mark_document_processed(self, filepath: str, metadata: Dict[str, Any] = None): """Mark a document as processed in the database.""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() checksum = self._calculate_checksum(filepath) filename = Path(filepath).name try: cursor.execute(''' INSERT OR REPLACE INTO processed_documents (filename, filepath, checksum, processed_at, metadata_json) VALUES (?, ?, ?, CURRENT_TIMESTAMP, ?) ''', (filename, filepath, checksum, str(metadata) if metadata else None)) conn.commit() logger.info(f"Document marked as processed: {filepath}") except sqlite3.Error as e: logger.error(f"Error marking document as processed: {e}") finally: conn.close() def _calculate_checksum(self, filepath: str) -> str: """Calculate MD5 checksum of a file.""" hash_md5 = hashlib.md5() with open(filepath, "rb") as f: # Read file in chunks to handle large files efficiently for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def get_text_splitter(file_extension: str): """Get appropriate text splitter based on file type.""" from llama_index.core.node_parser import SentenceSplitter, CodeSplitter, TokenTextSplitter from llama_index.core.node_parser import MarkdownElementNodeParser # For code files, use CodeSplitter if file_extension.lower() in ['.py', '.js', '.ts', '.java', '.cpp', '.c', '.h', '.cs', '.go', '.rs', '.php', '.html', '.css', '.md', '.rst']: return CodeSplitter(language="python", max_chars=1000) # For PDF files, use a parser that can handle multi-page documents elif file_extension.lower() == '.pdf': return SentenceSplitter( chunk_size=512, # Smaller chunks for dense PDF content chunk_overlap=100 ) # For presentation files (PowerPoint), use smaller chunks elif file_extension.lower() == '.pptx': return SentenceSplitter( chunk_size=256, # Slides typically have less text chunk_overlap=50 ) # For spreadsheets, use smaller chunks elif file_extension.lower() == '.xlsx': return SentenceSplitter( chunk_size=256, chunk_overlap=50 ) # For text-heavy documents like Word, use medium-sized chunks elif file_extension.lower() in ['.docx', '.odt']: return SentenceSplitter( chunk_size=768, chunk_overlap=150 ) # For plain text files, use larger chunks elif file_extension.lower() == '.txt': return SentenceSplitter( chunk_size=1024, chunk_overlap=200 ) # For image files, we'll handle them differently (metadata extraction) elif file_extension.lower() in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg']: # Images will be handled by multimodal models, return a simple splitter return SentenceSplitter( chunk_size=512, chunk_overlap=100 ) # For other files, use a standard SentenceSplitter else: return SentenceSplitter( chunk_size=768, chunk_overlap=150 ) def ensure_proper_encoding(text): """ Helper function to ensure proper encoding of text, especially for non-ASCII characters like Cyrillic. Args: text: Text that may need encoding correction Returns: Properly encoded text string """ if text is None: return "unknown" if isinstance(text, bytes): # Decode bytes to string with proper encoding try: return text.decode('utf-8') except UnicodeDecodeError: # If UTF-8 fails, try other encodings commonly used for Russian/Cyrillic text try: return text.decode('cp1251') # Windows Cyrillic encoding except UnicodeDecodeError: try: return text.decode('koi8-r') # Russian encoding except UnicodeDecodeError: # If all else fails, decode with errors='replace' return text.decode('utf-8', errors='replace') elif isinstance(text, str): # Ensure the string is properly encoded try: # Try to encode and decode to ensure it's valid UTF-8 return text.encode('utf-8').decode('utf-8') except UnicodeEncodeError: # If there are encoding issues, try to fix them return text.encode('utf-8', errors='replace').decode('utf-8', errors='replace') else: # Convert other types to string and ensure proper encoding text_str = str(text) try: return text_str.encode('utf-8').decode('utf-8') except UnicodeEncodeError: return text_str.encode('utf-8', errors='replace').decode('utf-8', errors='replace') def process_documents_from_data_folder(data_path: str = "../../../data", recursive: bool = True): """ Process all documents from the data folder using appropriate loaders and store in vector DB. Args: data_path: Path to the data folder relative to current directory recursive: Whether to process subdirectories recursively """ logger.info(f"Starting document enrichment from: {data_path}") # Initialize document tracker tracker = DocumentTracker() # Initialize vector storage vector_store, index = get_vector_store_and_index() # Get the absolute path to the data directory # The data_path is relative to the current working directory data_abs_path = Path(data_path) # If the path is relative, resolve it from the current working directory if not data_abs_path.is_absolute(): data_abs_path = Path.cwd() / data_abs_path logger.info(f"Looking for documents in: {data_abs_path.absolute()}") if not data_abs_path.exists(): logger.error(f"Data directory does not exist: {data_abs_path.absolute()}") return # Find all supported files in the data directory supported_extensions = { '.pdf', '.docx', '.xlsx', '.pptx', '.odt', '.txt', '.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg', '.zip', '.rar', '.tar', '.gz' } # Walk through the directory structure all_files = [] if recursive: for root, dirs, files in os.walk(data_abs_path): for file in files: file_ext = Path(file).suffix.lower() if file_ext in supported_extensions: all_files.append(os.path.join(root, file)) else: for file in data_abs_path.iterdir(): if file.is_file(): file_ext = file.suffix.lower() if file_ext in supported_extensions: all_files.append(str(file)) logger.info(f"Found {len(all_files)} files to process") processed_count = 0 skipped_count = 0 for file_path in all_files: logger.info(f"Processing file: {file_path}") # Check if document has already been processed if tracker.is_document_processed(file_path): logger.info(f"Skipping already processed file: {file_path}") skipped_count += 1 continue try: # Load the document using SimpleDirectoryReader # This automatically selects the appropriate reader based on file extension def file_metadata_func(file_path_str): # Apply proper encoding to filename filename = ensure_proper_encoding(Path(file_path_str).name) return {"filename": filename} reader = SimpleDirectoryReader( input_files=[file_path], file_metadata=file_metadata_func ) documents = reader.load_data() # Process each document for doc in documents: # Extract additional metadata based on document type file_ext = Path(file_path).suffix # Apply proper encoding to file path encoded_file_path = ensure_proper_encoding(file_path) # Add additional metadata doc.metadata["file_path"] = encoded_file_path doc.metadata["processed_at"] = datetime.now().isoformat() # Handle document-type-specific metadata if file_ext.lower() == '.pdf': # PDF-specific metadata doc.metadata["page_label"] = ensure_proper_encoding(doc.metadata.get("page_label", "unknown")) doc.metadata["file_type"] = "pdf" elif file_ext.lower() in ['.docx', '.odt']: # Word document metadata doc.metadata["section"] = ensure_proper_encoding(doc.metadata.get("section", "unknown")) doc.metadata["file_type"] = "document" elif file_ext.lower() == '.pptx': # PowerPoint metadata doc.metadata["slide_id"] = ensure_proper_encoding(doc.metadata.get("slide_id", "unknown")) doc.metadata["file_type"] = "presentation" elif file_ext.lower() == '.xlsx': # Excel metadata doc.metadata["sheet_name"] = ensure_proper_encoding(doc.metadata.get("sheet_name", "unknown")) doc.metadata["file_type"] = "spreadsheet" # Determine the appropriate text splitter based on file type splitter = get_text_splitter(file_ext) # Split the document into nodes nodes = splitter.get_nodes_from_documents([doc]) # Insert nodes into the vector index nodes_with_enhanced_metadata = [] for i, node in enumerate(nodes): # Enhance node metadata with additional information node.metadata["original_doc_id"] = ensure_proper_encoding(doc.doc_id) node.metadata["chunk_number"] = i node.metadata["total_chunks"] = len(nodes) node.metadata["file_path"] = encoded_file_path # Ensure the text content is properly encoded node.text = ensure_proper_encoding(node.text) nodes_with_enhanced_metadata.append(node) # Add all nodes to the index at once if nodes_with_enhanced_metadata: index.insert_nodes(nodes_with_enhanced_metadata) logger.info(f"Processed {len(nodes)} nodes from {encoded_file_path}") # Mark document as processed only after successful insertion tracker.mark_document_processed(file_path, {"nodes_count": len(documents)}) processed_count += 1 except Exception as e: logger.error(f"Error processing file {file_path}: {str(e)}") continue logger.info(f"Document enrichment completed. Processed: {processed_count}, Skipped: {skipped_count}") def enrich_documents(): """Main function to run the document enrichment process.""" logger.info("Starting document enrichment process") process_documents_from_data_folder() logger.info("Document enrichment process completed") if __name__ == "__main__": # Example usage logger.info("Running document enrichment...") enrich_documents()