Compare commits

...

22 Commits

Author SHA1 Message Date
93d538ecc6 Checking properly source of the file for metadata, with instanceof 2026-02-11 16:23:27 +03:00
f5659675ec - main feat: adaptation for async enrichment
- added file_type, this will hold the "таблица", "презентация" and so on types
- file source metadata is now taken either from local source or yandex disk.
2026-02-11 15:46:54 +03:00
7b52887558 Enrichment now processed via chunks. 2 documents -> into the vector storage. Also geussing source from the file extension 2026-02-11 11:23:50 +03:00
1e6ab247b9 Phase 12 done... loading via adaptive collection, yadisk or local 2026-02-10 22:19:27 +03:00
e9dd28ad55 Prep for Phase 12 of loading files for enrichment through the adaptive collections 2026-02-10 21:42:59 +03:00
06a3155b6b Working Yandex Disk integration for loading files. Tests for local and Yandex 2026-02-10 20:42:07 +03:00
63c3e2c5c7 Adaptive Collection, and Phase 11 WIP 2026-02-10 20:12:43 +03:00
447ecaba39 enrichment with years, events 2026-02-10 13:20:19 +03:00
ce62fd50ed Created this MD file to store things we need to look out to 2026-02-09 21:33:03 +03:00
2cb9b39bf2 removed test retrieval feature. off you go 2026-02-09 21:17:42 +03:00
f9c47c772f llamaindex update + unpacking archives in data 2026-02-09 19:00:23 +03:00
0adbc29692 env step for llamaindex 2026-02-05 22:48:39 +03:00
effbc7d00f proper usage of embedding models if defined in .env 2026-02-05 01:07:25 +03:00
31d198afb8 properly loading .env file with dotenv 2026-02-05 00:08:59 +03:00
833aad317a quick fix to use openai instead of ollama, in vetor_storage.py 2026-02-05 00:04:10 +03:00
f87f3c0cdd moved demo.html into demo-ui folder and renamed to index.html for ease of server serving... lol 2026-02-04 23:36:23 +03:00
a6320985dd resolved conflicts in requirements.txt 2026-02-04 23:34:37 +03:00
69e7ecee62 Updated requirements.txt file 2026-02-04 23:13:27 +03:00
8c57921b7f Working demo.html with connection to the api endpoint 2026-02-04 23:13:00 +03:00
9188b672c2 preparations for demo html page 2026-02-04 22:50:24 +03:00
bf3a3735cb openai compatible integration done 2026-02-04 22:30:57 +03:00
ae8c00316e Langchain plan phases for openai integration (openai compaible endpoint), server for retrieving data 2026-02-04 21:34:22 +03:00
32 changed files with 2320 additions and 498 deletions

BIN
.DS_Store vendored

Binary file not shown.

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
data-unpacked-archives
data-broken-archives

BIN
services/rag/.DS_Store vendored Normal file

Binary file not shown.

BIN
services/rag/langchain/.DS_Store vendored Normal file

Binary file not shown.

View File

@@ -1,2 +1,16 @@
OLLAMA_EMBEDDING_MODEL=MODEL OLLAMA_EMBEDDING_MODEL=MODEL
OLLAMA_CHAT_MODEL=MODEL OLLAMA_CHAT_MODEL=MODEL
OPENAI_CHAT_URL=URL
OPENAI_CHAT_KEY=KEY
CHAT_MODEL_STRATEGY=ollama
QDRANT_HOST=HOST
QDRANT_REST_PORT=PORT
QDRANT_GRPC_PORT=PORT
YADISK_TOKEN=TOKEN
ENRICHMENT_SOURCE=local/yadisk
ENRICHMENT_LOCAL_PATH=path
ENRICHMENT_YADISK_PATH=path
ENRICHMENT_PROCESSING_MODE=async/sync
ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT=5
ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS=4
ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS=4

View File

@@ -215,3 +215,4 @@ __marimo__/
# Streamlit # Streamlit
.streamlit/secrets.toml .streamlit/secrets.toml
document_tracking.db document_tracking.db
.env.test

View File

@@ -0,0 +1,4 @@
# Things to remember but not to implement right away. Wanna-have, nice-to-have, look-into
- [x] Year. Extract year from the chunk, store it into metadata, then add filter when retrieving, if query too has a year.
- [ ] Rankers. Should we use rerankers in our pipeline? What does it mean. Get from the vector storage a lot more results, than needed. Rerank them with reranker model, then feed the limited rest further into our pipeline.

View File

@@ -39,3 +39,65 @@ Chosen data folder: relatve ./../../../data - from the current folder
- [x] Create file `agent.py`, which will incorporate into itself agent, powered by the chat model. It should use integration with ollama, model specified in .env in property: OLLAMA_CHAT_MODEL - [x] Create file `agent.py`, which will incorporate into itself agent, powered by the chat model. It should use integration with ollama, model specified in .env in property: OLLAMA_CHAT_MODEL
- [x] Integrate this agent with the existing solution for retrieving, with retrieval.py - [x] Integrate this agent with the existing solution for retrieving, with retrieval.py
- [x] Integrate this agent with the cli, as command to start chatting with the agent. If there is a built-in solution for console communication with the agent, initiate this on cli command. - [x] Integrate this agent with the cli, as command to start chatting with the agent. If there is a built-in solution for console communication with the agent, initiate this on cli command.
# Phase 7 (openai integration for chat model)
- [x] Create openai integration, with using .env variables `OPENAI_CHAT_URL`, `OPENAI_CHAT_KEY`. First one for openai compatible URL, second one for Authorization Bearer token.
- [x] Make this integration optional, with using .env variable `CHAT_MODEL_STRATEGY`. There can be 2 options: "ollama", "openai". Ollama currently already done and working, so we should write code for checking which option is chosen in .env, with ollama being the default.
# Phase 8 (http endpoint to retrieve data from the vector storage by query)
- [x] Create file `server.py`, with web framework fastapi, for example
- [x] Add POST endpoint "/api/test-query" which will use agent, and retrieve response for query, sent in JSON format, field "query"
# Phase 9 (simple html web page with chat interface)
- [x] Create html webpage called demo.html, with simple UI for chat interface. It can be taken with predefined data from codepen or something
- [x] Adjust demo.html code, so it would in fact work with the API endpoint, as chat with the agent. API endpoint should be asked beforehand in propmt message.
- [x] After accepting API endpont address, it should be used to send requests and process responses to imitate chat with the agent by the provided API endpoint.
- [x] Show API endpoint in the header of the chat.
- [x] If there is error connecting with the API, imitate bot sending message about error with the connection and suggestion to reload page to provide new API endpoint
# Phase 10 (extracting additional metadata from chunks, and filtering where possible with it)
- [x] Create separate function in helpers module (create if does not exist) for retrieving years from the text. It should return found years.
- [x] During enriching vector storage, when loading and splitting documents, extract years from the chunk, and add these years as numbers into metadata field "years" (array of number or best suitable Qdrant type for searching by the year if needed). The helper function for retrieving years from text can be used.
- [x] Updating VectorStoreRetriever._get_relevant_documents: We need to ensure, that when searching for something with the year (user mentiones year in the query, in Russian language), we search vectors with metadata which has these mentioned year in the "years" array of years. The helper function for retrieving years from query can be used to filter out documents with years.
- [x] Create heuristic, regex function in helpers module for extracting name of event, in Russian language. We need to use regex and possible words before, after the event, etc.
- [x] Durint enriching vector storage, try to extract event name from the chunk and save in metadata in field "events", which will contain list of strings, possible evennts. Helper function usage is advised.
- [x] In VectorStoreRetriever._get_relevant_documents add similarity search for the event name, if event name is present in the query. Helper function should be used here to try to extract the event name.
# Phase 11 (adaptive collection, to attach different filesystems in the future)
- [x] Create adaptive collection class and adaptive file class in the helpers, which will be as abstract classes, that should encompass feature of iterating and working with files locally
- [x] Write local filesystem implementation of adaptive collection
- [x] Write tests for local filesystem implementation, using test/samples folder filled with files and directories for testing of iteration and recursivess
- [x] Create Yandex Disk implementation of the Adaptive Collection. Constructor should have requirement for TOKEN for Yandex Disk.
- [x] Write tests for Yandex Disk implementation, using folder "Общая/Информация". .env.test has YADISK_TOKEN variable for connecting. While testing log output of found files during iterating. If test fails at this step, leave to manual fixing, and this step can be marked as done.
# Phase 12 (using local file system or yandex disk)
During enrichment, we should use adaptive collection from the helpers, for loading documents. We should not use directly local filesystem, but use adaptive collection as a wrapper.
- [x] Adaptive file in helper now has filename in it, so tests should be adjusted for this
- [x] Add conditional usage of adaptive collection in the enrichment stage. .env has now variable ENRICHMENT_SOURCE with 2 possible values: yadisk, local
- [x] With local source, use env variable for local filesystem adaptive collection: ENRICHMENT_LOCAL_PATH
- [x] With yadisk source, use env variable for YADISK_TOKEN for token for auth within Yandex Disk, ENRICHMENT_YADISK_PATH for path on the Yandex Disk system
- [x] We still will need filetypes that we will need to skip, so while iterating over files we need to check their extension and skip them.
- [x] Adaptive files has filename in them, so it should be used when extracting metadata
# Phase 13 (async processing of files)
During this Phase we create asynchronous process of enrichment, utilizing async/await
- [x] Prepare enrichment to be async process, so adjust neede libraries, etc. that are needed to be processed.
- [x] Create queue for adaptive files. It will store adaptive files that needs to be processed
- [x] Create queue for documents that were taken from the adaptive files.
- [x] Create function that iterates through the adaptive collection and adds it to the adaptive files queue ADAPTIVE_FILES_QUEUE. Let's call it insert_adaptive_files_queue
- [x] Create function that takes adaptive file from the adaptive files queue (PROCESSED_DOCUMENTS_QUEUE) and processed it, by splitting into chunks of documents. Let's call it process_adaptive_files_queue
- [x] Create function that takes chunk of documents from the processed documents queue, and sends them into the vector storage. It marks document, of which these chunks, as processed in the local database (existing feature adapted here. Let's call it upload_processed_documents_from_queue
- [x] Utilize Python threading machinery, to create threads for several our functions. There will be environment variables: ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT (default 5), ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS (default 4), ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS (default 4)
- [x] Function insert_adaptive_files_queue would not be in a thread. It will iterate through adaptive collection and wait while queue has less than ENRICHMENT_ADAPTIVE_FILE_LOAD_QUEUE_LIMIT.
- [x] Function process_adaptive_files_queue should be started in number of threads (defined in .env ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS)
- [x] Function upload_processed_documents_from_queue should be started in number of threads (defined in .env ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS)
- [x] Program should control threads. Function insert_adaptive_files_queue, after adaptive collection ends, then should wait untill all theads finish. What does finish mean? It means when our insert_adaptive_files_queue function realizes that there is no adaptive files left in collection, it marks shared variable between threads, that collection finished. When our other functions in threads sees that this variable became true - they deplete queue and do not go to the next loop to wait for new items in queue, and just finish. This would eventually finish the program. Each thread finishes, and main program too as usual after processing all of things.

View File

@@ -2,7 +2,7 @@
## Project Overview ## Project Overview
This is a Retrieval-Augmented Generation (RAG) solution built using the Langchain framework. The project is designed to load documents from a data directory, store them in a vector database (Qdrant), and enable semantic search and chat capabilities using local LLMs via Ollama. This is a Retrieval-Augmented Generation (RAG) solution built using the Langchain framework. The project is designed to load documents from a data directory, store them in a vector database (Qdrant), and enable semantic search and chat capabilities using local LLMs via Ollama or OpenAI-compatible APIs.
The project follows a phased development approach with CLI entry points for different functionalities like document loading, retrieval, and chat. The project follows a phased development approach with CLI entry points for different functionalities like document loading, retrieval, and chat.
@@ -10,7 +10,7 @@ The project follows a phased development approach with CLI entry points for diff
- **Framework**: Langchain - **Framework**: Langchain
- **Vector Storage**: Qdrant - **Vector Storage**: Qdrant
- **Embeddings**: Ollama (with fallback option for OpenAI via OpenRouter) - **Embeddings**: Ollama (with fallback option for OpenAI via OpenRouter)
- **Chat Models**: Ollama - **Chat Models**: Ollama and OpenAI-compatible APIs
- **Data Directory**: `./../../../data` (relative to project root) - **Data Directory**: `./../../../data` (relative to project root)
- **Virtual Environment**: Python venv in `venv/` directory - **Virtual Environment**: Python venv in `venv/` directory
@@ -23,11 +23,13 @@ rag-solution/services/rag/langchain/
├── .gitignore # Git ignore rules ├── .gitignore # Git ignore rules
├── app.py # Main application file (currently empty) ├── app.py # Main application file (currently empty)
├── cli.py # CLI entrypoint with click library ├── cli.py # CLI entrypoint with click library
├── demo.html # HTML demo with chat interface for the RAG agent
├── EXTENSIONS.md # Supported file extensions and LangChain loaders ├── EXTENSIONS.md # Supported file extensions and LangChain loaders
├── enrichment.py # Document enrichment module for loading documents to vector storage ├── enrichment.py # Document enrichment module for loading documents to vector storage
├── PLANNING.md # Development roadmap and phases ├── PLANNING.md # Development roadmap and phases
├── QWEN.md # Current file - project context ├── QWEN.md # Current file - project context
├── requirements.txt # Python dependencies ├── requirements.txt # Python dependencies
├── server.py # Web server with API endpoints for the RAG agent
├── vector_storage.py # Vector storage module with Qdrant and Ollama embeddings ├── vector_storage.py # Vector storage module with Qdrant and Ollama embeddings
└── venv/ # Virtual environment └── venv/ # Virtual environment
``` ```
@@ -35,7 +37,7 @@ rag-solution/services/rag/langchain/
## Dependencies ## Dependencies
The project relies on several key libraries: The project relies on several key libraries:
- `langchain` and related ecosystem (`langchain-community`, `langchain-core`, `langchain-ollama`) - `langchain` and related ecosystem (`langchain-community`, `langchain-core`, `langchain-ollama`, `langchain-openai`)
- `langgraph` for workflow management - `langgraph` for workflow management
- `qdrant-client` for vector storage (to be installed) - `qdrant-client` for vector storage (to be installed)
- `ollama` for local LLM interaction - `ollama` for local LLM interaction
@@ -45,7 +47,7 @@ The project relies on several key libraries:
## Development Phases ## Development Phases
The project is organized into 6 development phases as outlined in `PLANNING.md`: The project is organized into 8 development phases as outlined in `PLANNING.md`:
### Phase 1: CLI Entrypoint ### Phase 1: CLI Entrypoint
- [x] Virtual environment setup - [x] Virtual environment setup
@@ -79,13 +81,43 @@ The project is organized into 6 development phases as outlined in `PLANNING.md`:
- [x] Integrate with retrieval functionality - [x] Integrate with retrieval functionality
- [x] Add CLI command for chat interaction - [x] Add CLI command for chat interaction
### Phase 7: OpenAI Integration for Chat Model
- [x] Create OpenAI-compatible integration using `.env` variables `OPENAI_CHAT_URL` and `OPENAI_CHAT_KEY`
- [x] Make this integration optional using `.env` variable `CHAT_MODEL_STRATEGY` with "ollama" as default
- [x] Allow switching between "ollama" and "openai" strategies
### Phase 8: HTTP Endpoint
- [x] Create web framework with POST endpoint `/api/test-query` for agent queries
- [x] Implement server using FastAPI and LangServe
- [x] Add request/response validation with Pydantic models
- [x] Include CORS middleware for cross-origin requests
- [x] Add health check endpoint
### Phase 9: HTML Chat Interface
- [x] Create HTML webpage called `demo.html` with simple UI for chat interface
- [x] Implement functionality to connect to the API endpoint
- [x] Add ability to configure API endpoint in the UI
- [x] Display conversation history with visual distinction between user and bot messages
- [x] Add error handling for API connection issues
## Environment Configuration ## Environment Configuration
The project uses environment variables for configuration: The project uses environment variables for configuration:
```env ```env
OLLAMA_EMBEDDING_MODEL=MODEL # Name of the Ollama model for embeddings # Embedding configuration
OLLAMA_CHAT_MODEL=MODEL # Name of the Ollama model for chat OLLAMA_EMBEDDING_MODEL=MODEL # Name of the Ollama model for embeddings
OPENAI_EMBEDDING_MODEL=MODEL # Name of the OpenAI model for embeddings (default: text-embedding-ada-002)
OPENAI_EMBEDDING_BASE_URL=URL # OpenAI-compatible API URL for embeddings
OPENAI_EMBEDDING_API_KEY=KEY # API key for OpenAI-compatible embedding service
EMBEDDING_STRATEGY=ollama # Strategy to use for embeddings: "ollama" (default) or "openai"
# Chat model configuration
OLLAMA_CHAT_MODEL=MODEL # Name of the Ollama model for chat
OPENAI_CHAT_URL=URL # OpenAI-compatible API URL for chat
OPENAI_CHAT_KEY=KEY # Authorization token for OpenAI-compatible API for chat
OPENAI_CHAT_MODEL=MODEL # Name of the OpenAI-compatible model to use for chat
CHAT_MODEL_STRATEGY=ollama # Strategy to use for chat: "ollama" (default) or "openai"
``` ```
## Building and Running ## Building and Running
@@ -176,6 +208,31 @@ The project is in early development phase. The virtual environment is set up and
- Agent uses document retrieval tool to fetch relevant information based on user queries - Agent uses document retrieval tool to fetch relevant information based on user queries
- Implemented proper error handling and conversation history management - Implemented proper error handling and conversation history management
### Phase 7 Implementation Notes
- Enhanced `agent.py` to support both Ollama and OpenAI-compatible chat models
- Added conditional logic to select chat model based on `CHAT_MODEL_STRATEGY` environment variable
- When strategy is "openai", uses `ChatOpenAI` with `OPENAI_CHAT_URL` and `OPENAI_CHAT_KEY` from environment
- When strategy is "ollama" (default), uses existing `ChatOllama` implementation
- Updated CLI chat command to show which model strategy is being used
### Phase 8 Implementation Notes
- Created `server.py` with FastAPI and integrated with existing agent functionality
- Implemented `/api/test-query` POST endpoint that accepts JSON with "query" field
- Added request/response validation using Pydantic models
- Included CORS middleware to support cross-origin requests
- Added health check endpoint at root path
- Server runs on port 8000 by default
- Supports both Ollama and OpenAI strategies through existing configuration
### Phase 9 Implementation Notes
- Created `demo.html` with a responsive chat interface
- Implemented API endpoint configuration in the UI
- Added functionality to send messages to the RAG agent via the API
- Included proper error handling for API connection issues
- Added typing indicators during API requests
- Implemented responsive design for different screen sizes
- Added visual distinction between user and bot messages
### Issue Fix Notes ### Issue Fix Notes
- Fixed DocumentRetrievalTool class to properly declare and initialize the retriever field - Fixed DocumentRetrievalTool class to properly declare and initialize the retriever field
- Resolved Pydantic field declaration issue that caused "object has no field" error - Resolved Pydantic field declaration issue that caused "object has no field" error
@@ -184,4 +241,6 @@ The project is in early development phase. The virtual environment is set up and
### Troubleshooting Notes ### Troubleshooting Notes
- If encountering "No module named 'unstructured_inference'" error, install unstructured-inference - If encountering "No module named 'unstructured_inference'" error, install unstructured-inference
- If seeing OCR-related errors, ensure tesseract is installed at the system level and unstructured-pytesseract is available - If seeing OCR-related errors, ensure tesseract is installed at the system level and unstructured-pytesseract is available
- For language detection issues, verify that appropriate spaCy models are downloaded - For language detection issues, verify that appropriate spaCy models are downloaded
- If getting Ollama connection errors when using OpenAI strategy, ensure EMBEDDING_STRATEGY is set correctly in .env
- When deploying without Ollama, set both CHAT_MODEL_STRATEGY and EMBEDDING_STRATEGY to "openai" in your .env file

View File

@@ -1,19 +1,78 @@
"""Agent module for the RAG solution with Ollama-powered chat agent.""" """Agent module for the RAG solution with Ollama-powered chat agent."""
import os import os
from typing import List, Dict, Any, Optional from typing import Any, Dict, List, Optional, Tuple
from langchain_core.tools import BaseTool, tool
from langchain_core.runnables import RunnableConfig from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
from langchain_core.agents import AgentFinish from langchain_core.agents import AgentFinish
from langgraph.prebuilt import create_react_agent from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_ollama import ChatOllama
from langchain_core.prompts import ChatPromptTemplate from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig
from langchain_core.tools import BaseTool, tool
from langchain_ollama import ChatOllama
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent
from loguru import logger from loguru import logger
from retrieval import create_retriever from retrieval import create_retriever
from vector_storage import initialize_vector_store from vector_storage import initialize_vector_store
# Load environment variables
load_dotenv()
def get_llm_model_info(
llm_model: Optional[str] = None,
) -> Tuple[str, str, str, str, str]:
"""
Get LLM model information based on environment configuration.
Args:
llm_model: Name of the model to use (defaults to environment variable based on strategy)
Returns:
Tuple containing (strategy, model_name, base_url_or_api_base, api_key, model_type)
"""
# Determine which model strategy to use
chat_model_strategy = os.getenv("CHAT_MODEL_STRATEGY", "ollama").lower()
if chat_model_strategy == "openai":
# Use OpenAI-compatible API
openai_chat_url = os.getenv("OPENAI_CHAT_URL")
openai_chat_key = os.getenv("OPENAI_CHAT_KEY")
if not openai_chat_url or not openai_chat_key:
raise ValueError(
"OPENAI_CHAT_URL and OPENAI_CHAT_KEY must be set when using OpenAI strategy"
)
# Get the model name from environment if not provided
if llm_model is None:
llm_model = os.getenv(
"OPENAI_CHAT_MODEL", "PREDEFINED_EXTERNAL_MODEL"
) # Default to a common model
return (
chat_model_strategy,
llm_model,
openai_chat_url,
openai_chat_key,
"ChatOpenAI",
)
else: # Default to ollama
# Use Ollama
# Get the model name from environment if not provided
if llm_model is None:
llm_model = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
return (
chat_model_strategy,
llm_model,
"http://localhost:11434",
"",
"ChatOllama",
)
class DocumentRetrievalTool(BaseTool): class DocumentRetrievalTool(BaseTool):
"""Tool for retrieving documents from the vector store based on a query.""" """Tool for retrieving documents from the vector store based on a query."""
@@ -44,7 +103,7 @@ class DocumentRetrievalTool(BaseTool):
metadata = doc.metadata metadata = doc.metadata
formatted_doc = ( formatted_doc = (
f"Document {i+1}:\n" f"Document {i + 1}:\n"
f"Source: {metadata.get('source', 'Unknown')}\n" f"Source: {metadata.get('source', 'Unknown')}\n"
f"Filename: {metadata.get('filename', 'Unknown')}\n" f"Filename: {metadata.get('filename', 'Unknown')}\n"
f"Page: {metadata.get('page_number', metadata.get('page', 'N/A'))}\n" f"Page: {metadata.get('page_number', metadata.get('page', 'N/A'))}\n"
@@ -64,167 +123,186 @@ class DocumentRetrievalTool(BaseTool):
def create_chat_agent( def create_chat_agent(
collection_name: str = "documents_langchain", collection_name: str = "documents_langchain", llm_model: Optional[str] = None
llm_model: str = None
) -> Any: ) -> Any:
""" """
Create a chat agent with document retrieval capabilities. Create a chat agent with document retrieval capabilities.
Args: Args:
collection_name: Name of the Qdrant collection to use collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use (defaults to OLLAMA_CHAT_MODEL env var) llm_model: Name of the model to use (defaults to environment variable based on strategy)
Returns: Returns:
Configured chat agent Configured chat agent
""" """
logger.info("Creating chat agent with document retrieval capabilities") logger.info("Creating chat agent with document retrieval capabilities")
# Get the model name from environment if not provided # Get model information using the utility function
if llm_model is None: strategy, model_name, base_url_or_api_base, api_key, model_type = (
llm_model = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1") get_llm_model_info(llm_model)
# Initialize the Ollama chat model
llm = ChatOllama(
model=llm_model,
base_url="http://localhost:11434", # Default Ollama URL
temperature=0.1,
) )
if strategy == "openai":
# Initialize the OpenAI-compatible chat model
llm = ChatOpenAI(
model=model_name,
openai_api_base=base_url_or_api_base,
openai_api_key=api_key,
temperature=0.1,
)
logger.info(
f"Using OpenAI-compatible model: {model_name} via {base_url_or_api_base}"
)
else: # Default to ollama
# Initialize the Ollama chat model
llm = ChatOllama(
model=model_name,
base_url=base_url_or_api_base, # Default Ollama URL
temperature=0.1,
)
logger.info(f"Using Ollama model: {model_name}")
# Create the document retrieval tool # Create the document retrieval tool
retrieval_tool = DocumentRetrievalTool() retrieval_tool = DocumentRetrievalTool()
# Create the agent with the LLM and tools # Create the agent with the LLM and tools
tools = [retrieval_tool] tools = [retrieval_tool]
agent = create_react_agent(llm, tools) agent = create_react_agent(llm, tools)
logger.info("Chat agent created successfully") logger.info("Chat agent created successfully")
return agent return agent
def chat_with_agent( def chat_with_agent(
query: str, query: str,
collection_name: str = "documents_langchain", collection_name: str = "documents_langchain",
llm_model: str = None, llm_model: Optional[str] = None,
history: List[BaseMessage] = None history: List[BaseMessage] = None,
) -> Dict[str, Any]: ) -> Dict[str, Any]:
""" """
Chat with the agent and get a response based on the query and document retrieval. Chat with the agent and get a response based on the query and document retrieval.
Args: Args:
query: The user's query query: The user's query
collection_name: Name of the Qdrant collection to use collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use llm_model: Name of the model to use (defaults to environment variable based on strategy)
history: Conversation history (list of messages) history: Conversation history (list of messages)
Returns: Returns:
Dictionary containing the agent's response and metadata Dictionary containing the agent's response and metadata
""" """
logger.info(f"Starting chat with query: {query}") logger.info(f"Starting chat with query: {query}")
# Create the agent # Create the agent
agent = create_chat_agent(collection_name, llm_model) agent = create_chat_agent(collection_name, llm_model)
# Prepare the input for the agent # Prepare the input for the agent
if history is None: if history is None:
history = [] history = []
# Add the user's query to the history # Add the user's query to the history
history.append(HumanMessage(content=query)) history.append(HumanMessage(content=query))
# Prepare the input for the agent executor # Prepare the input for the agent executor
agent_input = { agent_input = {"messages": history}
"messages": history
}
try: try:
# Invoke the agent # Invoke the agent
result = agent.invoke(agent_input) result = agent.invoke(agent_input)
# Extract the agent's response # Extract the agent's response
messages = result.get("messages", []) messages = result.get("messages", [])
ai_message = None ai_message = None
# Find the AI message in the results # Find the AI message in the results
for msg in reversed(messages): for msg in reversed(messages):
if isinstance(msg, AIMessage): if isinstance(msg, AIMessage):
ai_message = msg ai_message = msg
break break
if ai_message is None: if ai_message is None:
# If no AI message was found, return the last message content # If no AI message was found, return the last message content
if messages: if messages:
last_msg = messages[-1] last_msg = messages[-1]
response_content = getattr(last_msg, 'content', str(last_msg)) response_content = getattr(last_msg, "content", str(last_msg))
else: else:
response_content = "I couldn't generate a response to your query." response_content = "I couldn't generate a response to your query."
else: else:
response_content = ai_message.content response_content = ai_message.content
# Create the response dictionary # Create the response dictionary
response = { response = {
"response": response_content, "response": response_content,
"query": query, "query": query,
"history": messages, # Return updated history "history": messages, # Return updated history
"success": True "success": True,
} }
logger.info("Chat completed successfully") logger.info("Chat completed successfully")
return response return response
except Exception as e: except Exception as e:
logger.error(f"Error during chat: {str(e)}") logger.error(f"Error during chat: {str(e)}")
return { return {
"response": f"I encountered an error while processing your request: {str(e)}", "response": f"I encountered an error while processing your request: {str(e)}",
"query": query, "query": query,
"history": history, "history": history,
"success": False "success": False,
} }
def run_chat_loop( def run_chat_loop(collection_name: str = "documents_langchain", llm_model: str = None):
collection_name: str = "documents_langchain",
llm_model: str = None
):
""" """
Run an interactive chat loop with the agent. Run an interactive chat loop with the agent.
Args: Args:
collection_name: Name of the Qdrant collection to use collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use llm_model: Name of the model to use (defaults to environment variable based on strategy)
""" """
logger.info("Starting interactive chat loop") logger.info("Starting interactive chat loop")
print("Chat Agent initialized. Type 'quit' or 'exit' to end the conversation.\n")
# Get model information using the utility function
strategy, model_name, _, _, _ = get_llm_model_info(llm_model)
if strategy == "openai":
print(f"Chat Agent initialized with OpenAI-compatible model: {model_name}")
else:
print(f"Chat Agent initialized with Ollama model: {model_name}")
print("Type 'quit' or 'exit' to end the conversation.\n")
history = [] history = []
while True: while True:
try: try:
# Get user input # Get user input
user_input = input("You: ").strip() user_input = input("You: ").strip()
# Check for exit commands # Check for exit commands
if user_input.lower() in ['quit', 'exit', 'q']: if user_input.lower() in ["quit", "exit", "q"]:
print("Ending chat session. Goodbye!") print("Ending chat session. Goodbye!")
break break
if not user_input: if not user_input:
continue continue
# Get response from the agent # Get response from the agent
response_data = chat_with_agent( response_data = chat_with_agent(
query=user_input, query=user_input,
collection_name=collection_name, collection_name=collection_name,
llm_model=llm_model, llm_model=llm_model,
history=history history=history,
) )
# Update history with the new messages # Update history with the new messages
history = response_data.get("history", []) history = response_data.get("history", [])
# Print the agent's response # Print the agent's response
print(f"Agent: {response_data.get('response', 'No response generated')}\n") print(f"Agent: {response_data.get('response', 'No response generated')}\n")
except KeyboardInterrupt: except KeyboardInterrupt:
print("\nEnding chat session. Goodbye!") print("\nEnding chat session. Goodbye!")
break break
@@ -237,6 +315,6 @@ def run_chat_loop(
if __name__ == "__main__": if __name__ == "__main__":
# Example usage # Example usage
print("Initializing chat agent...") print("Initializing chat agent...")
# Run the interactive chat loop # Run the interactive chat loop
run_chat_loop() run_chat_loop()

View File

@@ -2,8 +2,12 @@ import os
from pathlib import Path from pathlib import Path
import click import click
from dotenv import load_dotenv
from loguru import logger from loguru import logger
# Load environment variables
load_dotenv()
# Configure logging to output to both file and stdout as specified in requirements # Configure logging to output to both file and stdout as specified in requirements
def setup_logging(): def setup_logging():
@@ -33,15 +37,16 @@ def ping():
name="enrich", name="enrich",
help="Load documents from data directory and store in vector database", help="Load documents from data directory and store in vector database",
) )
@click.option("--data-dir", default="../../../data", help="Path to the data directory")
@click.option( @click.option(
"--collection-name", "--collection-name",
default="documents_langchain", default="documents_langchain",
help="Name of the vector store collection", help="Name of the vector store collection",
) )
def enrich(data_dir, collection_name): def enrich(collection_name):
"""Load documents from data directory and store in vector database""" """Load documents from data directory and store in vector database"""
logger.info(f"Starting enrichment process for directory: {data_dir}") logger.info(
f"Starting enrichment process. Enrichment source: {os.getenv('ENRICHMENT_SOURCE')}"
)
try: try:
# Import here to avoid circular dependencies # Import here to avoid circular dependencies
@@ -52,7 +57,7 @@ def enrich(data_dir, collection_name):
vector_store = initialize_vector_store(collection_name=collection_name) vector_store = initialize_vector_store(collection_name=collection_name)
# Run enrichment process # Run enrichment process
run_enrichment_process(vector_store, data_dir=data_dir) run_enrichment_process(vector_store)
logger.info("Enrichment process completed successfully!") logger.info("Enrichment process completed successfully!")
click.echo("Documents have been successfully loaded into the vector store.") click.echo("Documents have been successfully loaded into the vector store.")
@@ -81,36 +86,9 @@ def retrieve(query, collection_name, top_k):
"""Retrieve documents from vector database based on a query""" """Retrieve documents from vector database based on a query"""
logger.info(f"Starting retrieval process for query: {query}") logger.info(f"Starting retrieval process for query: {query}")
try: click.echo(
# Import here to avoid circular dependencies "WARNING: Retrieval disabled, since it is no longer relevant for the testing of the retrieving feature. Use chat with agent instead. xoxo"
from retrieval import search_documents_with_metadata )
# Perform retrieval
results = search_documents_with_metadata(
query=query,
collection_name=collection_name,
top_k=top_k
)
if not results:
click.echo("No relevant documents found for the query.")
return
click.echo(f"Found {len(results)} relevant documents:\n")
for i, result in enumerate(results, 1):
click.echo(f"{i}. Source: {result['source']}")
click.echo(f" Filename: {result['filename']}")
click.echo(f" Page: {result['page_number']}")
click.echo(f" File Extension: {result['file_extension']}")
click.echo(f" Content Preview: {result['content'][:200]}...")
click.echo(f" Metadata: {result['metadata']}\n")
logger.info("Retrieval process completed successfully!")
except Exception as e:
logger.error(f"Error during retrieval process: {str(e)}")
click.echo(f"Error: {str(e)}")
@cli.command( @cli.command(
@@ -139,10 +117,7 @@ def chat(collection_name, model):
click.echo("Type 'quit' or 'exit' to end the conversation.\n") click.echo("Type 'quit' or 'exit' to end the conversation.\n")
# Run the interactive chat loop # Run the interactive chat loop
run_chat_loop( run_chat_loop(collection_name=collection_name, llm_model=model)
collection_name=collection_name,
llm_model=model
)
logger.info("Chat session ended") logger.info("Chat session ended")

View File

@@ -0,0 +1,401 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>RAG Solution Chat Interface</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
}
body {
background-color: #f5f7fa;
color: #333;
line-height: 1.6;
}
.container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
}
header {
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
color: white;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
h1 {
font-size: 1.8rem;
margin-bottom: 10px;
}
.api-endpoint-container {
display: flex;
gap: 10px;
margin-top: 15px;
flex-wrap: wrap;
}
.api-endpoint-container label {
display: flex;
align-items: center;
font-weight: bold;
}
.api-endpoint-container input {
flex: 1;
min-width: 300px;
padding: 8px 12px;
border: none;
border-radius: 4px;
margin-left: 5px;
}
.api-endpoint-container button {
background-color: #fff;
color: #2575fc;
border: none;
padding: 8px 15px;
border-radius: 4px;
cursor: pointer;
font-weight: bold;
transition: background-color 0.3s;
}
.api-endpoint-container button:hover {
background-color: #e6f0ff;
}
.chat-container {
background-color: white;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
overflow: hidden;
height: 60vh;
display: flex;
flex-direction: column;
}
.chat-header {
background-color: #f8f9fa;
padding: 15px;
border-bottom: 1px solid #eaeaea;
font-weight: bold;
color: #495057;
}
.chat-messages {
flex: 1;
padding: 20px;
overflow-y: auto;
display: flex;
flex-direction: column;
gap: 15px;
}
.message {
max-width: 80%;
padding: 12px 16px;
border-radius: 18px;
position: relative;
animation: fadeIn 0.3s ease;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.user-message {
align-self: flex-end;
background-color: #2575fc;
color: white;
border-bottom-right-radius: 4px;
}
.bot-message {
align-self: flex-start;
background-color: #e9ecef;
color: #495057;
border-bottom-left-radius: 4px;
}
.error-message {
align-self: flex-start;
background-color: #f8d7da;
color: #721c24;
border: 1px solid #f5c6cb;
border-radius: 18px;
}
.input-area {
display: flex;
padding: 15px;
background-color: #f8f9fa;
border-top: 1px solid #eaeaea;
}
.input-area input {
flex: 1;
padding: 12px 15px;
border: 1px solid #ddd;
border-radius: 24px;
outline: none;
font-size: 1rem;
}
.input-area button {
background-color: #2575fc;
color: white;
border: none;
padding: 12px 20px;
border-radius: 24px;
margin-left: 10px;
cursor: pointer;
font-weight: bold;
transition: background-color 0.3s;
}
.input-area button:hover {
background-color: #1a68e8;
}
.input-area button:disabled {
background-color: #adb5bd;
cursor: not-allowed;
}
.typing-indicator {
align-self: flex-start;
background-color: #e9ecef;
color: #495057;
padding: 12px 16px;
border-radius: 18px;
font-style: italic;
}
footer {
text-align: center;
margin-top: 20px;
color: #6c757d;
font-size: 0.9rem;
}
@media (max-width: 768px) {
.container {
padding: 10px;
}
.api-endpoint-container {
flex-direction: column;
}
.api-endpoint-container input {
min-width: auto;
}
.message {
max-width: 90%;
}
}
</style>
</head>
<body>
<div class="container">
<header>
<h1>RAG Solution Chat Interface</h1>
<div class="api-endpoint-container">
<label for="apiEndpoint">API Endpoint:</label>
<input
type="text"
id="apiEndpoint"
value="http://localhost:8000/api/test-query"
placeholder="Enter API endpoint URL"
/>
<button onclick="setApiEndpoint()">Set Endpoint</button>
</div>
</header>
<div class="chat-container">
<div class="chat-header">Chat with RAG Agent</div>
<div class="chat-messages" id="chatMessages">
<div class="message bot-message">
Hello! I'm your RAG agent. Please enter your API endpoint and start
chatting.
</div>
</div>
<div class="input-area">
<input
type="text"
id="userInput"
placeholder="Type your message here..."
onkeypress="handleKeyPress(event)"
/>
<button onclick="sendMessage()" id="sendButton">Send</button>
</div>
</div>
<footer>
<p>RAG Solution with LangChain | Chat Interface Demo</p>
</footer>
</div>
<script>
// Store the API endpoint
let apiEndpoint = document.getElementById("apiEndpoint").value;
// Set the API endpoint from the input field
function setApiEndpoint() {
const input = document.getElementById("apiEndpoint");
apiEndpoint = input.value.trim();
if (!apiEndpoint) {
alert("Please enter a valid API endpoint URL");
return;
}
// Add notification that endpoint was set
addMessage(`API endpoint set to: ${apiEndpoint}`, "bot-message");
}
// Send a message to the API
async function sendMessage() {
const inputElement = document.getElementById("userInput");
const message = inputElement.value.trim();
const sendButton = document.getElementById("sendButton");
if (!message) {
return;
}
if (!apiEndpoint) {
alert("Please set the API endpoint first");
return;
}
// Disable the send button and input during request
sendButton.disabled = true;
inputElement.disabled = true;
try {
// Add user message to chat
addMessage(message, "user-message");
// Clear input
inputElement.value = "";
// Show typing indicator
const typingIndicator = addMessage(
"Thinking...",
"typing-indicator",
"typing",
);
// Send request to API
const response = await fetch(apiEndpoint, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
query: message,
}),
});
// Remove typing indicator
removeMessage(typingIndicator);
if (!response.ok) {
throw new Error(
`API request failed with status ${response.status}`,
);
}
const data = await response.json();
// Add bot response to chat
if (data.success) {
addMessage(data.response, "bot-message");
} else {
addMessage(
`Error: ${data.error || "Unknown error occurred"}`,
"error-message",
);
}
} catch (error) {
console.error("Error:", error);
// Remove typing indicator if still present
const typingElements = document.querySelectorAll(".typing");
typingElements.forEach((el) => el.remove());
// Add error message to chat
addMessage(
`Connection error: ${error.message}. Please check the API endpoint and try again.`,
"error-message",
);
} finally {
// Re-enable the send button and input
sendButton.disabled = false;
inputElement.disabled = false;
inputElement.focus();
}
}
// Add a message to the chat
function addMessage(text, className, id = null) {
const chatMessages = document.getElementById("chatMessages");
const messageDiv = document.createElement("div");
messageDiv.className = `message ${className}`;
if (id) {
messageDiv.id = id;
}
// Format text with line breaks
const formattedText = text.replace(/\n/g, "<br>");
messageDiv.innerHTML = formattedText;
chatMessages.appendChild(messageDiv);
// Scroll to bottom
chatMessages.scrollTop = chatMessages.scrollHeight;
return messageDiv;
}
// Remove a message from the chat
function removeMessage(element) {
if (element && element.parentNode) {
element.parentNode.removeChild(element);
}
}
// Handle Enter key press in the input field
function handleKeyPress(event) {
if (event.key === "Enter") {
sendMessage();
}
}
// Focus on the input field when the page loads
window.onload = function () {
document.getElementById("userInput").focus();
};
</script>
</body>
</html>

View File

@@ -1,12 +1,21 @@
"""Document enrichment module for loading documents into vector storage.""" """Document enrichment module for loading documents into vector storage."""
import os
import hashlib import hashlib
import os
import queue
import threading
from pathlib import Path from pathlib import Path
from typing import List, Dict, Any from typing import List, Optional, Tuple
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.documents import Document from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader from loguru import logger
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
# Dynamically import other loaders to handle optional dependencies # Dynamically import other loaders to handle optional dependencies
try: try:
from langchain_community.document_loaders import UnstructuredWordDocumentLoader from langchain_community.document_loaders import UnstructuredWordDocumentLoader
@@ -32,32 +41,92 @@ try:
from langchain_community.document_loaders import UnstructuredODTLoader from langchain_community.document_loaders import UnstructuredODTLoader
except ImportError: except ImportError:
UnstructuredODTLoader = None UnstructuredODTLoader = None
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from loguru import logger
import sqlite3
from helpers import (
LocalFilesystemAdaptiveCollection,
YandexDiskAdaptiveCollection,
YandexDiskAdaptiveFile,
_AdaptiveCollection,
_AdaptiveFile,
extract_russian_event_names,
extract_years_from_text,
)
# Load environment variables
load_dotenv()
# Define the path to the data directory # Define the path to the data directory
DATA_DIR = Path("../../../data").resolve() DATA_DIR = Path("../../../data").resolve()
DB_PATH = Path("document_tracking.db").resolve() DB_PATH = Path("document_tracking.db").resolve()
ENRICHMENT_SOURCE = os.getenv("ENRICHMENT_SOURCE", "local").lower()
ENRICHMENT_LOCAL_PATH = os.getenv("ENRICHMENT_LOCAL_PATH")
ENRICHMENT_YADISK_PATH = os.getenv("ENRICHMENT_YADISK_PATH")
YADISK_TOKEN = os.getenv("YADISK_TOKEN")
ENRICHMENT_PROCESSING_MODE = os.getenv("ENRICHMENT_PROCESSING_MODE", "async").lower()
ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT = int(
os.getenv("ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT", "5")
)
ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS = int(
os.getenv("ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS", "4")
)
ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS = int(
os.getenv("ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS", "4")
)
SUPPORTED_EXTENSIONS = {
".pdf",
".docx",
".doc",
".pptx",
".xlsx",
".xls",
".jpg",
".jpeg",
".png",
".gif",
".bmp",
".tiff",
".webp",
".odt",
".txt", # this one is obvious but was unexpected to see in data lol
}
Base = declarative_base() Base = declarative_base()
class ProcessedDocument(Base): class ProcessedDocument(Base):
"""Database model for tracking processed documents.""" """Database model for tracking processed documents."""
__tablename__ = "processed_documents" __tablename__ = "processed_documents"
id = Column(Integer, primary_key=True) id = Column(Integer, primary_key=True)
file_path = Column(String, unique=True, nullable=False) file_path = Column(String, unique=True, nullable=False)
file_hash = Column(String, nullable=False) file_hash = Column(String, nullable=False)
# to guess the filetype in russian language, for searching it
def try_guess_file_type(extension: str) -> str:
if extension in [".xlsx", "xls"]:
return "таблица"
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
return "изображение"
elif extension in [".pptx"]:
return "презентация"
else:
return "документ"
def identify_adaptive_file_source(adaptive_file: _AdaptiveFile) -> str:
if isinstance(adaptive_file, YandexDiskAdaptiveFile):
return "Яндекс Диск"
else:
return "Локальный Файл"
class DocumentEnricher: class DocumentEnricher:
"""Class responsible for enriching documents and loading them to vector storage.""" """Class responsible for enriching documents and loading them to vector storage."""
def __init__(self, vector_store): def __init__(self, vector_store):
self.vector_store = vector_store self.vector_store = vector_store
self.text_splitter = RecursiveCharacterTextSplitter( self.text_splitter = RecursiveCharacterTextSplitter(
@@ -65,212 +134,357 @@ class DocumentEnricher:
chunk_overlap=200, chunk_overlap=200,
length_function=len, length_function=len,
) )
# In sync mode we force minimal concurrency values.
if ENRICHMENT_PROCESSING_MODE == "sync":
self.adaptive_files_queue_limit = 1
self.file_process_threads_count = 1
self.document_upload_threads_count = 1
else:
self.adaptive_files_queue_limit = max(
1, ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT
)
self.file_process_threads_count = max(
1, ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS
)
self.document_upload_threads_count = max(
1, ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS
)
# Phase 13 queues
self.ADAPTIVE_FILES_QUEUE: queue.Queue = queue.Queue(
maxsize=self.adaptive_files_queue_limit
)
self.PROCESSED_DOCUMENTS_QUEUE: queue.Queue = queue.Queue(
maxsize=max(1, self.adaptive_files_queue_limit * 2)
)
# Shared state for thread lifecycle
self.collection_finished = threading.Event()
self.processing_finished = threading.Event()
# Initialize database for tracking processed documents # Initialize database for tracking processed documents
self._init_db() self._init_db()
def _init_db(self): def _init_db(self):
"""Initialize the SQLite database for tracking processed documents.""" """Initialize the SQLite database for tracking processed documents."""
self.engine = create_engine(f"sqlite:///{DB_PATH}") self.engine = create_engine(f"sqlite:///{DB_PATH}")
Base.metadata.create_all(self.engine) Base.metadata.create_all(self.engine)
Session = sessionmaker(bind=self.engine) self.SessionLocal = sessionmaker(bind=self.engine)
self.session = Session()
def _get_file_hash(self, file_path: str) -> str: def _get_file_hash(self, file_path: str) -> str:
"""Calculate SHA256 hash of a file.""" """Calculate SHA256 hash of a file."""
hash_sha256 = hashlib.sha256() hash_sha256 = hashlib.sha256()
with open(file_path, "rb") as f: with open(file_path, "rb") as file_handle:
# Read file in chunks to handle large files for chunk in iter(lambda: file_handle.read(4096), b""):
for chunk in iter(lambda: f.read(4096), b""):
hash_sha256.update(chunk) hash_sha256.update(chunk)
return hash_sha256.hexdigest() return hash_sha256.hexdigest()
def _is_document_processed(self, file_path: str) -> bool: def _is_document_hash_processed(self, file_hash: str) -> bool:
"""Check if a document has already been processed.""" """Check if a document hash has already been processed."""
file_hash = self._get_file_hash(file_path) session = self.SessionLocal()
existing = self.session.query(ProcessedDocument).filter_by( try:
file_hash=file_hash existing = (
).first() session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
return existing is not None )
return existing is not None
def _mark_document_processed(self, file_path: str): finally:
session.close()
def _mark_document_processed(self, file_identifier: str, file_hash: str):
"""Mark a document as processed in the database.""" """Mark a document as processed in the database."""
file_hash = self._get_file_hash(file_path) session = self.SessionLocal()
doc_record = ProcessedDocument( try:
file_path=file_path, existing = (
file_hash=file_hash session.query(ProcessedDocument)
) .filter_by(file_path=file_identifier)
self.session.add(doc_record) .first()
self.session.commit() )
if existing is not None:
existing.file_hash = file_hash
else:
session.add(
ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
)
session.commit()
finally:
session.close()
def _get_loader_for_extension(self, file_path: str): def _get_loader_for_extension(self, file_path: str):
"""Get the appropriate loader for a given file extension.""" """Get the appropriate loader for a given file extension."""
ext = Path(file_path).suffix.lower() ext = Path(file_path).suffix.lower()
if ext == ".pdf": if ext == ".pdf":
return PyPDFLoader(file_path) return PyPDFLoader(file_path)
elif ext in [".docx", ".doc"]: if ext in [".docx", ".doc"]:
if UnstructuredWordDocumentLoader is None: if UnstructuredWordDocumentLoader is None:
logger.warning(f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping.") logger.warning(
f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping."
)
return None return None
return UnstructuredWordDocumentLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]}) return UnstructuredWordDocumentLoader(
elif ext == ".pptx": file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext == ".pptx":
if UnstructuredPowerPointLoader is None: if UnstructuredPowerPointLoader is None:
logger.warning(f"UnstructuredPowerPointLoader not available for {file_path}. Skipping.") logger.warning(
f"UnstructuredPowerPointLoader not available for {file_path}. Skipping."
)
return None return None
return UnstructuredPowerPointLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]}) return UnstructuredPowerPointLoader(
elif ext in [".xlsx", ".xls"]: file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext in [".xlsx", ".xls"]:
if UnstructuredExcelLoader is None: if UnstructuredExcelLoader is None:
logger.warning(f"UnstructuredExcelLoader not available for {file_path}. Skipping.") logger.warning(
f"UnstructuredExcelLoader not available for {file_path}. Skipping."
)
return None return None
return UnstructuredExcelLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]}) return UnstructuredExcelLoader(
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]: file_path, **{"strategy": "hi_res", "languages": ["rus"]}
)
if ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
if UnstructuredImageLoader is None: if UnstructuredImageLoader is None:
logger.warning(f"UnstructuredImageLoader not available for {file_path}. Skipping.") logger.warning(
f"UnstructuredImageLoader not available for {file_path}. Skipping."
)
return None return None
# Use OCR strategy for images to extract text return UnstructuredImageLoader(
return UnstructuredImageLoader(file_path, **{"strategy": "ocr_only", "languages": ["rus"]}) file_path, **{"strategy": "ocr_only", "languages": ["rus"]}
elif ext == ".odt": )
if ext == ".odt":
if UnstructuredODTLoader is None: if UnstructuredODTLoader is None:
logger.warning(f"UnstructuredODTLoader not available for {file_path}. Skipping.") logger.warning(
f"UnstructuredODTLoader not available for {file_path}. Skipping."
)
return None return None
return UnstructuredODTLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]}) return UnstructuredODTLoader(
else: file_path, **{"strategy": "hi_res", "languages": ["rus"]}
# For text files and unsupported formats, try to load as text )
try: return None
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return None, content # Return content directly for text processing
except UnicodeDecodeError:
logger.warning(f"Could not decode file as text: {file_path}")
return None, None
def load_and_split_documents(self, file_paths: List[str]) -> List[Document]:
"""Load documents from file paths and split them appropriately."""
all_docs = []
for file_path in file_paths: def _load_one_adaptive_file(
if self._is_document_processed(file_path): self, adaptive_file: _AdaptiveFile
logger.info(f"Skipping already processed document: {file_path}") ) -> Tuple[List[Document], Optional[Tuple[str, str]]]:
continue """Load and split one adaptive file by using its local working callback."""
loaded_docs: List[Document] = []
processed_record: Optional[Tuple[str, str]] = None
source_identifier = identify_adaptive_file_source(adaptive_file)
extension = adaptive_file.extension.lower()
file_type = try_guess_file_type(extension)
logger.info(f"Processing document: {file_path}") def process_local_file(local_file_path: str):
nonlocal loaded_docs, processed_record
# Get the appropriate loader for the file extension file_hash = self._get_file_hash(local_file_path)
loader = self._get_loader_for_extension(file_path) if self._is_document_hash_processed(file_hash):
logger.info(
f"SKIPPING already processed document hash for: {source_identifier}"
)
return
else:
logger.info("Document is not processed! Doing it")
loader = self._get_loader_for_extension(local_file_path)
if loader is None: if loader is None:
# For unsupported formats that we tried to load as text logger.warning(f"No loader available for file: {source_identifier}")
return
docs = loader.load()
for doc in docs:
doc.metadata["file_type"] = file_type
doc.metadata["source"] = source_identifier
doc.metadata["filename"] = adaptive_file.filename
doc.metadata["file_path"] = source_identifier
doc.metadata["file_size"] = os.path.getsize(local_file_path)
doc.metadata["file_extension"] = extension
if "page" in doc.metadata:
doc.metadata["page_number"] = doc.metadata["page"]
split_docs = self.text_splitter.split_documents(docs)
for chunk in split_docs:
chunk.metadata["years"] = extract_years_from_text(chunk.page_content)
chunk.metadata["events"] = extract_russian_event_names(
chunk.page_content
)
loaded_docs = split_docs
processed_record = (source_identifier, file_hash)
adaptive_file.work_with_file_locally(process_local_file)
return loaded_docs, processed_record
# Phase 13 API: inserts adaptive files into ADAPTIVE_FILES_QUEUE
def insert_adaptive_files_queue(
self, adaptive_collection: _AdaptiveCollection, recursive: bool = True
):
for adaptive_file in adaptive_collection.iterate(recursive=recursive):
if adaptive_file.extension.lower() not in SUPPORTED_EXTENSIONS:
logger.debug(
f"Skipping unsupported file extension for {adaptive_file.filename}: {adaptive_file.extension}"
)
continue
self.ADAPTIVE_FILES_QUEUE.put(adaptive_file)
logger.debug("ADAPTIVE COLLECTION DEPLETED!")
self.collection_finished.set()
# Phase 13 API: reads adaptive files and writes processed docs into PROCESSED_DOCUMENTS_QUEUE
def process_adaptive_files_queue(self):
while True:
try:
adaptive_file = self.ADAPTIVE_FILES_QUEUE.get(timeout=0.2)
except queue.Empty:
if self.collection_finished.is_set():
return
continue continue
try: try:
# Load the document(s) split_docs, processed_record = self._load_one_adaptive_file(
docs = loader.load() adaptive_file
)
if split_docs:
self.PROCESSED_DOCUMENTS_QUEUE.put((split_docs, processed_record))
except Exception as error:
logger.error(f"Error processing {adaptive_file.filename}: {error}")
finally:
self.ADAPTIVE_FILES_QUEUE.task_done()
# Add metadata to each document # Phase 13 API: uploads chunked docs and marks file processed
for doc in docs: def upload_processed_documents_from_queue(self):
# Extract metadata from the original file while True:
doc.metadata["source"] = file_path try:
doc.metadata["filename"] = Path(file_path).name payload = self.PROCESSED_DOCUMENTS_QUEUE.get(timeout=0.2)
doc.metadata["file_path"] = file_path except queue.Empty:
doc.metadata["file_size"] = os.path.getsize(file_path) if self.processing_finished.is_set():
return
# Add page number if available in original metadata
if "page" in doc.metadata:
doc.metadata["page_number"] = doc.metadata["page"]
# Add file extension as metadata
doc.metadata["file_extension"] = Path(file_path).suffix
# Split documents if they are too large
split_docs = self.text_splitter.split_documents(docs)
# Add to the collection
all_docs.extend(split_docs)
except Exception as e:
logger.error(f"Error processing {file_path}: {str(e)}")
continue continue
return all_docs try:
documents, processed_record = payload
def enrich_and_store(self, file_paths: List[str]): self.vector_store.add_documents(documents)
if processed_record is not None:
self._mark_document_processed(
processed_record[0], processed_record[1]
)
except Exception as error:
logger.error(
f"Error uploading processed documents: {error}. But swallowing error. NOT raising."
)
finally:
self.PROCESSED_DOCUMENTS_QUEUE.task_done()
def _run_threaded_pipeline(self, adaptive_collection: _AdaptiveCollection):
"""Run Phase 13 queue/thread pipeline."""
process_threads = [
threading.Thread(
target=self.process_adaptive_files_queue,
name=f"adaptive-file-processor-{index}",
daemon=True,
)
for index in range(self.file_process_threads_count)
]
upload_threads = [
threading.Thread(
target=self.upload_processed_documents_from_queue,
name=f"document-uploader-{index}",
daemon=True,
)
for index in range(self.document_upload_threads_count)
]
for thread in process_threads:
thread.start()
for thread in upload_threads:
thread.start()
# This one intentionally runs on main thread per Phase 13 requirement.
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
# Wait file queue completion and processing threads end.
self.ADAPTIVE_FILES_QUEUE.join()
for thread in process_threads:
thread.join()
# Signal upload workers no more payload is expected.
self.processing_finished.set()
# Wait upload completion and upload threads end.
self.PROCESSED_DOCUMENTS_QUEUE.join()
for thread in upload_threads:
thread.join()
def _run_sync_pipeline(self, adaptive_collection: _AdaptiveCollection):
"""Sequential pipeline for sync mode."""
logger.info("Running enrichment in sync mode")
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
self.process_adaptive_files_queue()
self.processing_finished.set()
self.upload_processed_documents_from_queue()
def enrich_and_store(self, adaptive_collection: _AdaptiveCollection):
"""Load, enrich, and store documents in the vector store.""" """Load, enrich, and store documents in the vector store."""
logger.info(f"Starting enrichment process for {len(file_paths)} files...") logger.info("Starting enrichment process...")
# Load and split documents if ENRICHMENT_PROCESSING_MODE == "sync":
documents = self.load_and_split_documents(file_paths) logger.info("Document enrichment process starting in SYNC mode")
self._run_sync_pipeline(adaptive_collection)
if not documents:
logger.info("No new documents to process.")
return return
logger.info(f"Loaded and split {len(documents)} document chunks, adding to vector store...") logger.info("Document enrichment process starting in ASYNC/THREAD mode")
self._run_threaded_pipeline(adaptive_collection)
# Add documents to vector store
try:
self.vector_store.add_documents(documents)
# Only mark documents as processed after successful insertion to vector store
processed_file_paths = set()
for doc in documents:
if 'source' in doc.metadata:
processed_file_paths.add(doc.metadata['source'])
for file_path in processed_file_paths:
self._mark_document_processed(file_path)
logger.info(f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_paths)} files as processed.")
except Exception as e:
logger.error(f"Error adding documents to vector store: {str(e)}")
raise
def get_all_documents_from_data_dir(data_dir: str = str(DATA_DIR)) -> List[str]: def get_enrichment_adaptive_collection(
"""Get all supported document file paths from the data directory.""" data_dir: str = str(DATA_DIR),
supported_extensions = { ) -> _AdaptiveCollection:
'.pdf', '.docx', '.doc', '.pptx', '.xlsx', '.xls', """Create adaptive collection based on environment source configuration."""
'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', source = ENRICHMENT_SOURCE
'.webp', '.odt' if source == "local":
} local_path = ENRICHMENT_LOCAL_PATH or data_dir
logger.info(f"Using local adaptive collection from path: {local_path}")
file_paths = [] return LocalFilesystemAdaptiveCollection(local_path)
for root, dirs, files in os.walk(data_dir):
for file in files: if source == "yadisk":
if Path(file).suffix.lower() in supported_extensions: if not YADISK_TOKEN:
file_paths.append(os.path.join(root, file)) raise ValueError("YADISK_TOKEN must be set when ENRICHMENT_SOURCE=yadisk")
if not ENRICHMENT_YADISK_PATH:
return file_paths raise ValueError(
"ENRICHMENT_YADISK_PATH must be set when ENRICHMENT_SOURCE=yadisk"
)
logger.info(
f"Using Yandex Disk adaptive collection from path: {ENRICHMENT_YADISK_PATH}"
)
return YandexDiskAdaptiveCollection(
token=YADISK_TOKEN,
base_dir=ENRICHMENT_YADISK_PATH,
)
raise ValueError(
f"Unsupported ENRICHMENT_SOURCE='{source}'. Allowed values: local, yadisk"
)
def run_enrichment_process(vector_store, data_dir: str = str(DATA_DIR)): def run_enrichment_process(vector_store, data_dir: str = str(DATA_DIR)):
"""Run the full enrichment process.""" """Run the full enrichment process."""
logger.info(f"Starting document enrichment from directory: {data_dir}") logger.info("Starting document enrichment process")
# Get all supported documents from the data directory adaptive_collection = get_enrichment_adaptive_collection(data_dir=data_dir)
file_paths = get_all_documents_from_data_dir(data_dir)
if not file_paths:
logger.warning(f"No supported documents found in {data_dir}")
return
logger.info(f"Found {len(file_paths)} documents to process")
# Initialize the document enricher # Initialize the document enricher
enricher = DocumentEnricher(vector_store) enricher = DocumentEnricher(vector_store)
# Run the enrichment process # Run the enrichment process
enricher.enrich_and_store(file_paths) enricher.enrich_and_store(adaptive_collection)
logger.info("Document enrichment process completed!") logger.info("Document enrichment process completed!")
if __name__ == "__main__": if __name__ == "__main__":
# Example usage
from vector_storage import initialize_vector_store from vector_storage import initialize_vector_store
# Initialize vector store
vector_store = initialize_vector_store() vector_store = initialize_vector_store()
run_enrichment_process(vector_store)
# Run enrichment process
run_enrichment_process(vector_store)

View File

@@ -0,0 +1,280 @@
"""Helper utilities for metadata extraction from Russian text."""
import os
import re
import tempfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Callable, Iterator, List
import requests
from loguru import logger
_YEAR_PATTERN = re.compile(r"(?<!\d)(1\d{3}|20\d{2}|2100)(?!\d)")
_EVENT_KEYWORDS = (
"конференц",
"форум",
"выставк",
"фестивал",
"саммит",
"чемпионат",
"олимпиад",
"кубок",
"конкурс",
"вебинар",
"семинар",
"лекци",
"презентаци",
"хакатон",
"митап",
"встреч",
"съезд",
"конгресс",
)
_EVENT_PHRASE_PATTERN = re.compile(
r"\b("
r"конференц(?:ия|ии|ию|ией)?|"
r"форум(?:а|е|у|ом)?|"
r"выставк(?:а|и|е|у|ой)?|"
r"фестивал(?:ь|я|е|ю|ем)?|"
r"саммит(?:а|е|у|ом)?|"
r"чемпионат(?:а|е|у|ом)?|"
r"олимпиад(?:а|ы|е|у|ой)?|"
r"кубок(?:а|е|у|ом)?|"
r"конкурс(?:а|е|у|ом)?|"
r"вебинар(?:а|е|у|ом)?|"
r"семинар(?:а|е|у|ом)?|"
r"лекци(?:я|и|ю|ей)?|"
r"презентаци(?:я|и|ю|ей)?|"
r"хакатон(?:а|е|у|ом)?|"
r"митап(?:а|е|у|ом)?|"
r"встреч(?:а|и|е|у|ей)?|"
r"съезд(?:а|е|у|ом)?|"
r"конгресс(?:а|е|у|ом)?"
r")\b(?:\s+[A-Za-zА-Яа-я0-9][A-Za-zА-Яа-я0-9\-_/.]{1,40}){0,6}",
flags=re.IGNORECASE,
)
_QUOTED_EVENT_PATTERN = re.compile(
r"(?:мероприят(?:ие|ия|ию|ием)|событ(?:ие|ия|ию|ием)|"
r"конференц(?:ия|ии|ию|ией)?|форум(?:а|е|у|ом)?|"
r"выставк(?:а|и|е|у|ой)?|фестивал(?:ь|я|е|ю|ем)?)"
r"[^\n\"«»]{0,40}[«\"]([^»\"\n]{3,120})[»\"]",
flags=re.IGNORECASE,
)
def _normalize_event(value: str) -> str:
normalized = " ".join(value.strip().split()).strip(".,;:!?()[]{}")
return normalized.lower()
def extract_years_from_text(text: str) -> List[int]:
"""Extract unique years from text as integers."""
if not text:
return []
years = {int(match.group(0)) for match in _YEAR_PATTERN.finditer(text)}
return sorted(years)
def extract_russian_event_names(text: str) -> List[str]:
"""
Extract likely Russian event names from text using heuristic regex rules.
Returns normalized event phrases in lowercase.
"""
if not text:
return []
events: List[str] = []
seen = set()
for match in _EVENT_PHRASE_PATTERN.finditer(text):
candidate = _normalize_event(match.group(0))
if len(candidate) < 6:
continue
if not any(keyword in candidate for keyword in _EVENT_KEYWORDS):
continue
if candidate not in seen:
events.append(candidate)
seen.add(candidate)
for match in _QUOTED_EVENT_PATTERN.finditer(text):
quoted = _normalize_event(match.group(1))
if len(quoted) < 3:
continue
if quoted not in seen:
events.append(quoted)
seen.add(quoted)
return events
class _AdaptiveFile(ABC):
extension: str # Format: .jpg
filename: str
def __init__(self, filename: str, extension: str):
self.filename = filename
self.extension = extension
# This method allows to work with file locally, and lambda should be provided for this.
# Why separate method? For possible cleanup after work is done. And to download file, if needed
# Lambda: first argument is a local path
@abstractmethod
def work_with_file_locally(self, func: Callable[[str], None]):
"""Run callback with a local path to the file."""
class _AdaptiveCollection(ABC):
# Generator method with yield
@abstractmethod
def iterate(self, recursive: bool) -> Iterator[_AdaptiveFile]:
"""Iterate files in collection."""
class LocalFilesystemAdaptiveFile(_AdaptiveFile):
local_path: str
def __init__(self, filename: str, extension: str, local_path: str):
super().__init__(filename, extension)
self.local_path = local_path
def work_with_file_locally(self, func: Callable[[str], None]):
func(self.local_path)
class LocalFilesystemAdaptiveCollection(_AdaptiveCollection):
base_dir: str
def __init__(self, base_dir: str):
super().__init__()
self.base_dir = base_dir
def iterate(self, recursive: bool) -> Iterator[_AdaptiveFile]:
for root, dirs, files in os.walk(self.base_dir):
for file in files:
full_path = os.path.join(root, file)
p = Path(full_path)
yield LocalFilesystemAdaptiveFile(p.name, p.suffix, full_path)
if not recursive:
break
class YandexDiskAdaptiveFile(_AdaptiveFile):
"""Adaptive file representation for Yandex Disk resources."""
remote_path: str
def __init__(self, filename: str, extension: str, remote_path: str, token: str):
super().__init__(filename, extension)
self.token = token
self.remote_path = remote_path
def _download_to_temp_file(self) -> str:
headers = {"Authorization": f"OAuth {self.token}"}
response = requests.get(
"https://cloud-api.yandex.net/v1/disk/resources/download",
headers=headers,
params={"path": self.remote_path},
timeout=30,
)
response.raise_for_status()
href = response.json()["href"]
file_response = requests.get(href, timeout=120)
file_response.raise_for_status()
p = Path(self.remote_path)
suffix = p.suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
temp_file.write(file_response.content)
return temp_file.name
def work_with_file_locally(self, func: Callable[[str], None]):
temp_path = self._download_to_temp_file()
try:
func(temp_path)
finally:
if os.path.exists(temp_path):
os.unlink(temp_path)
class YandexDiskAdaptiveCollection(_AdaptiveCollection):
"""Adaptive collection implementation for Yandex Disk."""
def __init__(self, token: str, base_dir: str):
if not token:
raise ValueError("Yandex Disk token is required")
self.token = token
self.base_dir = base_dir
self._headers = {"Authorization": f"OAuth {self.token}"}
@staticmethod
def _normalize_disk_path(path: str) -> str:
return path if path.startswith("disk:/") else f"disk:/{path.lstrip('/')}"
def _get_resource_info(self, path: str) -> dict:
response = requests.get(
"https://cloud-api.yandex.net/v1/disk/resources",
headers=self._headers,
params={"path": path, "limit": 1000},
timeout=30,
)
response.raise_for_status()
return response.json()
def _iter_children(self, path: str) -> Iterator[dict]:
offset = 0
while True:
response = requests.get(
"https://cloud-api.yandex.net/v1/disk/resources",
headers=self._headers,
params={"path": path, "limit": 1000, "offset": offset},
timeout=30,
)
response.raise_for_status()
payload = response.json()
embedded = payload.get("_embedded", {})
items = embedded.get("items", [])
if not items:
break
for item in items:
yield item
if len(items) < 1000:
break
offset += 1000
def iterate(self, recursive: bool) -> Iterator[_AdaptiveFile]:
root_path = self._normalize_disk_path(self.base_dir)
root_info = self._get_resource_info(root_path)
if root_info.get("type") == "file":
path = root_info["path"]
logger.info(f"Found file on Yandex Disk: {path}")
p = Path(path)
yield YandexDiskAdaptiveFile(p.name, p.suffix, path, self.token)
return
directories = [root_path]
while directories:
current_dir = directories.pop(0)
for item in self._iter_children(current_dir):
item_type = item.get("type")
item_path = str(item.get("path"))
if item_type == "file":
logger.info(f"Found file on Yandex Disk: {item_path}")
p = Path(item_path)
yield YandexDiskAdaptiveFile(
p.name, p.suffix, item_path, self.token
)
elif recursive and item_type == "dir":
directories.append(item_path)

View File

@@ -1,58 +1,57 @@
aiohappyeyeballs==2.6.1 # Core dependencies for the RAG solution
aiohttp==3.13.2 langchain>=0.3.0
aiosignal==1.4.0 langchain-community>=0.3.0
annotated-types==0.7.0 langchain-core>=0.3.0
anyio==4.12.0 langchain-ollama>=0.1.0
attrs==25.4.0 langchain-openai>=0.2.0
beautifulsoup4==4.14.3 langchain-qdrant>=0.1.0
bs4==0.0.2 langchain-text-splitters>=0.3.0
certifi==2025.11.12 langgraph>=1.0.0
charset-normalizer==3.4.4 langgraph-prebuilt>=1.0.0
click==8.3.1 langgraph-sdk>=0.1.0
dataclasses-json==0.6.7 langsmith>=0.2.0
frozenlist==1.8.0 qdrant-client>=1.10.0
h11==0.16.0
httpcore==1.0.9 # Web framework and API
httpx==0.28.1 fastapi>=0.100.0
httpx-sse==0.4.3 uvicorn>=0.20.0
idna==3.11
jsonpatch==1.33 # CLI and utilities
jsonpointer==3.0.0 click>=8.0.0
langchain==1.2.0 loguru>=0.7.0
langchain-classic==1.0.1 python-dotenv>=1.0.0
langchain-community==0.4.1
langchain-core==1.2.5 # Core Python libraries
langchain-ollama==1.0.1 aiohttp>=3.8.0
langchain-text-splitters==1.1.0 httpx>=0.25.0
langgraph==1.0.5 pydantic>=2.5.0
langgraph-checkpoint==3.0.1 pydantic-settings>=2.0.0
langgraph-prebuilt==1.0.5 requests>=2.30.0
langgraph-sdk==0.3.1 typing-extensions>=4.8.0
langsmith==0.5.2
marshmallow==3.26.2 # Data processing
multidict==6.7.0 numpy>=1.26.0
mypy_extensions==1.1.0 pandas>=2.0.0
numpy==2.4.0 lxml>=4.9.0
ollama==0.6.1 openpyxl>=3.1.0
orjson==3.11.5 python-docx>=1.0.0
ormsgpack==1.12.1 python-pptx>=0.6.0
packaging==25.0 pypdf>=4.0.0
propcache==0.4.1 pdf2image>=1.16.0
pydantic==2.12.5
pydantic-settings==2.12.0 # Image and OCR processing
pydantic_core==2.41.5 pillow>=10.0.0
python-dotenv==1.2.1 pytesseract>=0.3.0
PyYAML==6.0.3 pi_heif>=0.17.0
requests==2.32.5
requests-toolbelt==1.0.0 # Natural language processing
soupsieve==2.8.1 spacy>=3.7.0
SQLAlchemy==2.0.45
tenacity==9.1.2 # Unstructured document processing
typing-inspect==0.9.0 unstructured>=0.15.0
typing-inspection==0.4.2 unstructured-client>=0.15.0
typing_extensions==4.15.0 unstructured-inference>=0.7.0
urllib3==2.6.2 unstructured-pytesseract>=0.3.12
uuid_utils==0.12.0
xxhash==3.6.0 # System and utilities
yarl==1.22.0 ollama>=0.3.0
zstandard==0.25.0

View File

@@ -1,44 +1,182 @@
"""Retrieval module for querying vector storage and returning relevant documents with metadata.""" """Retrieval module for querying vector storage and returning relevant documents with metadata."""
import os import os
from typing import List, Optional from typing import List
from langchain_core.retrievers import BaseRetriever
from dotenv import load_dotenv
from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from loguru import logger from loguru import logger
from qdrant_client.http.models import FieldCondition, Filter, MatchAny
from helpers import extract_russian_event_names, extract_years_from_text
from vector_storage import initialize_vector_store from vector_storage import initialize_vector_store
# Load environment variables
load_dotenv()
class VectorStoreRetriever(BaseRetriever): class VectorStoreRetriever(BaseRetriever):
""" """
A custom retriever that uses the Qdrant vector store to retrieve relevant documents. A custom retriever that uses the Qdrant vector store to retrieve relevant documents.
""" """
vector_store: object # Qdrant vector store instance vector_store: object # Qdrant vector store instance
top_k: int = 5 # Number of documents to retrieve top_k: int = 5 # Number of documents to retrieve
def _build_qdrant_filter(
self, years: List[int], events: List[str]
) -> Filter | None:
"""Build a Qdrant payload filter for extracted years and events."""
conditions: List[FieldCondition] = []
if years:
conditions.extend(
[
FieldCondition(
key="metadata.years",
match=MatchAny(any=years),
),
FieldCondition(
key="years",
match=MatchAny(any=years),
),
]
)
if events:
conditions.extend(
[
FieldCondition(
key="metadata.events",
match=MatchAny(any=events),
),
FieldCondition(
key="events",
match=MatchAny(any=events),
),
]
)
if not conditions:
return None
return Filter(should=conditions)
@staticmethod
def _post_filter_documents(
documents: List[Document], years: List[int], events: List[str]
) -> List[Document]:
"""Fallback filter in Python in case vector DB filter cannot be applied."""
if not years and not events:
return documents
year_set = set(years)
event_set = set(events)
filtered: List[Document] = []
for doc in documents:
metadata = doc.metadata or {}
doc_years = {
int(year)
for year in metadata.get("years", [])
if isinstance(year, int) or (isinstance(year, str) and year.isdigit())
}
doc_events = {str(event).lower() for event in metadata.get("events", [])}
year_match = not year_set or bool(doc_years.intersection(year_set))
event_match = not event_set or bool(doc_events.intersection(event_set))
if year_match and event_match:
filtered.append(doc)
return filtered
@staticmethod
def _merge_unique_documents(documents: List[Document]) -> List[Document]:
"""Deduplicate documents while preserving order."""
unique_docs: List[Document] = []
seen = set()
for doc in documents:
dedup_key = (
doc.metadata.get("source", ""),
doc.metadata.get("page_number", doc.metadata.get("page", "")),
doc.page_content[:200],
)
if dedup_key in seen:
continue
seen.add(dedup_key)
unique_docs.append(doc)
return unique_docs
def _get_relevant_documents( def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]: ) -> List[Document]:
""" """
Retrieve relevant documents based on the query. Retrieve relevant documents based on the query.
Args: Args:
query: The query string to search for query: The query string to search for
run_manager: Callback manager for the run run_manager: Callback manager for the run
Returns: Returns:
List of relevant documents with metadata List of relevant documents with metadata
""" """
logger.info(f"Searching for documents related to query: {query[:50]}...") logger.info(f"Searching for documents related to query: {query[:50]}...")
try: try:
# Perform similarity search on the vector store years_in_query = extract_years_from_text(query)
results = self.vector_store.similarity_search(query, k=self.top_k) events_in_query = extract_russian_event_names(query)
search_filter = self._build_qdrant_filter(years_in_query, events_in_query)
logger.info(
f"Extracted query metadata for retrieval: years={years_in_query}, events={events_in_query}"
)
# Main search by original user query.
search_k = max(self.top_k * 3, self.top_k)
if search_filter is not None:
try:
results = self.vector_store.similarity_search(
query, k=search_k, filter=search_filter
)
except Exception as filter_error:
logger.warning(
f"Vector store filter failed, fallback to unfiltered search: {filter_error}"
)
results = self.vector_store.similarity_search(query, k=search_k)
results = self._post_filter_documents(
results, years_in_query, events_in_query
)
else:
results = self.vector_store.similarity_search(query, k=search_k)
# Additional event-focused similarity search if event names are present.
if events_in_query:
event_results: List[Document] = []
for event_name in events_in_query:
try:
if search_filter is not None:
event_docs = self.vector_store.similarity_search(
event_name, k=self.top_k, filter=search_filter
)
else:
event_docs = self.vector_store.similarity_search(
event_name, k=self.top_k
)
except Exception as event_search_error:
logger.warning(
f"Event-focused search failed for '{event_name}': {event_search_error}"
)
continue
event_results.extend(event_docs)
results.extend(event_results)
results = self._merge_unique_documents(results)[: self.top_k]
logger.info(f"Found {len(results)} relevant documents") logger.info(f"Found {len(results)} relevant documents")
return results return results
except Exception as e: except Exception as e:
logger.error(f"Error during similarity search: {str(e)}") logger.error(f"Error during similarity search: {str(e)}")
@@ -48,54 +186,29 @@ class VectorStoreRetriever(BaseRetriever):
def create_retriever(collection_name: str = "documents_langchain", top_k: int = 5): def create_retriever(collection_name: str = "documents_langchain", top_k: int = 5):
""" """
Create and return a retriever instance connected to the vector store. Create and return a retriever instance connected to the vector store.
Args: Args:
collection_name: Name of the Qdrant collection to use collection_name: Name of the Qdrant collection to use
top_k: Number of documents to retrieve top_k: Number of documents to retrieve
Returns: Returns:
VectorStoreRetriever instance VectorStoreRetriever instance
""" """
logger.info(f"Initializing vector store for retrieval from collection: {collection_name}") logger.info(
f"Initializing vector store for retrieval from collection: {collection_name}"
)
# Initialize the vector store # Initialize the vector store
vector_store = initialize_vector_store(collection_name=collection_name) vector_store = initialize_vector_store(collection_name=collection_name)
# Create and return the retriever # Create and return the retriever
retriever = VectorStoreRetriever(vector_store=vector_store, top_k=top_k) retriever = VectorStoreRetriever(vector_store=vector_store, top_k=top_k)
return retriever return retriever
def search_documents(query: str, collection_name: str = "documents_langchain", top_k: int = 5) -> List[Document]:
"""
Search for documents in the vector store based on the query.
Args:
query: The query string to search for
collection_name: Name of the Qdrant collection to use
top_k: Number of documents to retrieve
Returns:
List of documents with metadata
"""
logger.info(f"Starting document search for query: {query}")
# Create the retriever
retriever = create_retriever(collection_name=collection_name, top_k=top_k)
# Perform the search
results = retriever.invoke(query)
logger.info(f"Search completed, returned {len(results)} documents")
return results
def search_documents_with_metadata( def search_documents_with_metadata(
query: str, query: str, collection_name: str = "documents_langchain", top_k: int = 5
collection_name: str = "documents_langchain",
top_k: int = 5
) -> List[dict]: ) -> List[dict]:
""" """
Search for documents and return them with detailed metadata. Search for documents and return them with detailed metadata.
@@ -125,30 +238,20 @@ def search_documents_with_metadata(
"metadata": doc.metadata, "metadata": doc.metadata,
"source": doc.metadata.get("source", "Unknown"), "source": doc.metadata.get("source", "Unknown"),
"filename": doc.metadata.get("filename", "Unknown"), "filename": doc.metadata.get("filename", "Unknown"),
"page_number": doc.metadata.get("page_number", doc.metadata.get("page", "N/A")), "page_number": doc.metadata.get(
"page_number", doc.metadata.get("page", "N/A")
),
"file_extension": doc.metadata.get("file_extension", "N/A"), "file_extension": doc.metadata.get("file_extension", "N/A"),
"file_size": doc.metadata.get("file_size", "N/A") "file_size": doc.metadata.get("file_size", "N/A"),
} }
formatted_results.append(formatted_result) formatted_results.append(formatted_result)
logger.info(f"Metadata search completed, returned {len(formatted_results)} documents") logger.info(
f"Metadata search completed, returned {len(formatted_results)} documents"
)
return formatted_results return formatted_results
except Exception as e: except Exception as e:
logger.error(f"Error during document search with metadata: {str(e)}") logger.error(f"Error during document search with metadata: {str(e)}")
return [] return []
if __name__ == "__main__":
# Example usage
query = "What is the main topic discussed in the documents?"
results = search_documents_with_metadata(query, top_k=5)
print(f"Found {len(results)} documents:")
for i, result in enumerate(results, 1):
print(f"\n{i}. Source: {result['source']}")
print(f" Filename: {result['filename']}")
print(f" Page: {result['page_number']}")
print(f" Content preview: {result['content'][:200]}...")
print(f" Metadata: {result['metadata']}")

View File

@@ -0,0 +1,122 @@
"""Web server for the RAG solution with LangServe integration."""
import json
import os
from contextlib import asynccontextmanager
from typing import Any, Dict
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pydantic import BaseModel
from agent import chat_with_agent, get_llm_model_info
# Load environment variables
load_dotenv()
class QueryRequest(BaseModel):
"""Request model for the query endpoint."""
query: str
collection_name: str = "documents_langchain"
llm_model: str = None
class QueryResponse(BaseModel):
"""Response model for the query endpoint."""
response: str
query: str
success: bool
error: str = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan event handler for startup and shutdown."""
# Startup
logger.info("Starting RAG server...")
yield
# Shutdown
logger.info("Shutting down RAG server...")
# Create FastAPI app
app = FastAPI(
title="RAG Solution API",
description="API for Retrieval-Augmented Generation solution with Langchain",
version="1.0.0",
lifespan=lifespan,
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, configure this properly
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/api/test-query", response_model=QueryResponse)
async def test_query(request: QueryRequest) -> QueryResponse:
"""
POST endpoint to query the RAG agent.
Accepts a JSON payload with a "query" field and returns the agent's response.
"""
logger.info(f"Received query: {request.query}")
try:
# Call the existing chat_with_agent function from agent.py
response_data = chat_with_agent(
query=request.query,
collection_name=request.collection_name,
llm_model=request.llm_model,
)
logger.info("Query processed successfully")
return QueryResponse(
response=response_data.get("response", ""),
query=request.query,
success=response_data.get("success", False),
)
except Exception as e:
logger.error(f"Error processing query: {str(e)}")
error_msg = f"Error processing query: {str(e)}"
return QueryResponse(
response="I encountered an error while processing your request.",
query=request.query,
success=False,
error=error_msg,
)
@app.get("/")
async def root():
"""Root endpoint for health check."""
return {"message": "RAG Solution API is running", "status": "healthy"}
if __name__ == "__main__":
import uvicorn
# Configure logging to output to both file and stdout as specified in requirements
logs_dir = os.path.join(os.getcwd(), "logs")
os.makedirs(logs_dir, exist_ok=True)
logger.add("logs/dev.log", rotation="10 MB", retention="10 days")
# Run the server
uvicorn.run(
"server:app",
host="0.0.0.0",
port=8331,
reload=True, # Enable auto-reload during development
)

View File

@@ -0,0 +1 @@
first level

View File

@@ -0,0 +1 @@
root file

View File

@@ -0,0 +1,55 @@
import os
import unittest
from pathlib import Path
from helpers import LocalFilesystemAdaptiveCollection, LocalFilesystemAdaptiveFile
class TestLocalFilesystemAdaptiveCollection(unittest.TestCase):
def setUp(self):
self.samples_dir = Path(__file__).parent / "samples"
def test_iterate_non_recursive_returns_only_root_files(self):
collection = LocalFilesystemAdaptiveCollection(str(self.samples_dir))
files = list(collection.iterate(recursive=False))
file_names = sorted(file.filename for file in files)
self.assertEqual(file_names, ["root.txt"])
self.assertTrue(all(isinstance(file, LocalFilesystemAdaptiveFile) for file in files))
def test_iterate_recursive_returns_nested_files(self):
collection = LocalFilesystemAdaptiveCollection(str(self.samples_dir))
files = list(collection.iterate(recursive=True))
relative_paths = sorted(
str(Path(file.local_path).relative_to(self.samples_dir)) for file in files
)
self.assertEqual(
relative_paths,
["level1/first.md", "level1/level2/second.log", "root.txt"],
)
def test_work_with_file_locally_provides_existing_path(self):
target_path = self.samples_dir / "root.txt"
adaptive_file = LocalFilesystemAdaptiveFile(
target_path.name, target_path.suffix, str(target_path)
)
observed = {}
def callback(path: str):
observed["path"] = path
with open(path, "r", encoding="utf-8") as handle:
observed["content"] = handle.read().strip()
adaptive_file.work_with_file_locally(callback)
self.assertEqual(adaptive_file.filename, "root.txt")
self.assertEqual(observed["path"], str(target_path))
self.assertEqual(observed["content"], "root file")
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,41 @@
import os
import unittest
from pathlib import Path
import requests
from loguru import logger
from dotenv import load_dotenv
from helpers import YandexDiskAdaptiveCollection
load_dotenv(dotenv_path=Path(__file__).resolve().parent.parent / ".env.test")
class TestYandexDiskAdaptiveCollection(unittest.TestCase):
def test_constructor_requires_token(self):
with self.assertRaises(ValueError):
YandexDiskAdaptiveCollection(token="", base_dir="Общая/Информация")
def test_iterate_logs_found_files_for_shared_folder(self):
token = os.getenv("YADISK_TOKEN")
if not token:
self.skipTest("YADISK_TOKEN is not configured")
collection = YandexDiskAdaptiveCollection(
token=token,
base_dir="Общая/Информация",
)
try:
files = list(collection.iterate(recursive=True))
except requests.RequestException as exc:
self.skipTest(f"Yandex Disk request failed and needs manual verification: {exc}")
for item in files:
self.assertTrue(item.filename)
logger.info(f"Yandex file found during test iteration: {item.local_path}")
self.assertIsInstance(files, list)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,12 +1,14 @@
"""Vector storage module using Qdrant and Ollama embeddings for the RAG solution.""" """Vector storage module using Qdrant and configurable embeddings for the RAG solution."""
import os import os
from typing import Optional from typing import Optional
from dotenv import load_dotenv from dotenv import load_dotenv
from langchain_qdrant import QdrantVectorStore
from langchain_core.documents import Document from langchain_core.documents import Document
from langchain_ollama import OllamaEmbeddings from langchain_ollama import OllamaEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_qdrant import QdrantVectorStore
from loguru import logger
from qdrant_client import QdrantClient from qdrant_client import QdrantClient
# Load environment variables # Load environment variables
@@ -17,15 +19,19 @@ QDRANT_HOST = os.getenv("QDRANT_HOST", "localhost")
QDRANT_REST_PORT = int(os.getenv("QDRANT_REST_PORT", 6333)) QDRANT_REST_PORT = int(os.getenv("QDRANT_REST_PORT", 6333))
QDRANT_GRPC_PORT = int(os.getenv("QDRANT_GRPC_PORT", 6334)) QDRANT_GRPC_PORT = int(os.getenv("QDRANT_GRPC_PORT", 6334))
# Ollama embedding model configuration # Embedding model configuration
EMBEDDING_STRATEGY = os.getenv("EMBEDDING_STRATEGY", "ollama").lower()
OLLAMA_EMBEDDING_MODEL = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text") OLLAMA_EMBEDDING_MODEL = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text")
OPENAI_EMBEDDING_MODEL = os.getenv("OPENAI_EMBEDDING_MODEL", "text-embedding-ada-002")
OPENAI_EMBEDDING_BASE_URL = os.getenv("OPENAI_EMBEDDING_BASE_URL")
OPENAI_EMBEDDING_API_KEY = os.getenv("OPENAI_EMBEDDING_API_KEY")
def initialize_vector_store( def initialize_vector_store(
collection_name: str = "documents_langchain", recreate_collection: bool = False collection_name: str = "documents_langchain", recreate_collection: bool = False
) -> QdrantVectorStore: ) -> QdrantVectorStore:
""" """
Initialize and return a Qdrant vector store with Ollama embeddings. Initialize and return a Qdrant vector store with configurable embeddings.
Args: Args:
collection_name: Name of the Qdrant collection to use collection_name: Name of the Qdrant collection to use
@@ -34,11 +40,30 @@ def initialize_vector_store(
Returns: Returns:
Initialized Qdrant vector store Initialized Qdrant vector store
""" """
# Initialize Ollama embeddings # Determine which embedding strategy to use
embeddings = OllamaEmbeddings( if EMBEDDING_STRATEGY == "openai":
model=OLLAMA_EMBEDDING_MODEL, # Validate required OpenAI embedding variables
base_url="http://localhost:11434", # Default Ollama URL if not OPENAI_EMBEDDING_API_KEY or not OPENAI_EMBEDDING_BASE_URL:
) raise ValueError(
"OPENAI_EMBEDDING_API_KEY and OPENAI_EMBEDDING_BASE_URL must be set when using OpenAI embedding strategy"
)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(
model=OPENAI_EMBEDDING_MODEL,
openai_api_base=OPENAI_EMBEDDING_BASE_URL,
openai_api_key=OPENAI_EMBEDDING_API_KEY,
)
elif EMBEDDING_STRATEGY == "none":
embeddings = None
logger.warning("Embedding strategy for vector storage is NONE! FYI")
else: # Default to ollama
# Initialize Ollama embeddings
embeddings = OllamaEmbeddings(
model=OLLAMA_EMBEDDING_MODEL,
base_url="http://localhost:11434", # Default Ollama URL
)
# Check if collection exists and create if needed # Check if collection exists and create if needed
client = QdrantClient( client = QdrantClient(
@@ -100,7 +125,9 @@ def add_documents_to_vector_store(
vector_store.add_documents(batch) vector_store.add_documents(batch)
def search_vector_store(vector_store: QdrantVectorStore, query: str, top_k: int = 5) -> list: def search_vector_store(
vector_store: QdrantVectorStore, query: str, top_k: int = 5
) -> list:
""" """
Search the vector store for similar documents. Search the vector store for similar documents.

View File

@@ -1,3 +1,14 @@
# Model Strategy Configuration
CHAT_STRATEGY=ollama
EMBEDDING_STRATEGY=ollama
# Ollama Configuration # Ollama Configuration
OLLAMA_EMBEDDING_MODEL=MODEL OLLAMA_EMBEDDING_MODEL=MODEL
OLLAMA_CHAT_MODEL=MODEL OLLAMA_CHAT_MODEL=MODEL
# OpenAI Configuration (for reference - uncomment and configure when using OpenAI strategy)
# OPENAI_CHAT_URL=https://api.openai.com/v1
# OPENAI_CHAT_KEY=your_openai_api_key_here
# OPENAI_EMBEDDING_MODEL=text-embedding-3-small
# OPENAI_EMBEDDING_BASE_URL=https://api.openai.com/v1
# OPENAI_EMBEDDING_API_KEY=your_openai_api_key_here

View File

@@ -35,8 +35,20 @@ Chosen data folder: relatve ./../../../data - from the current folder
- [x] Create file `retrieval.py` with the configuration for chosen RAG framework, that will retrieve data from the vector storage based on the query. Use retrieving library/plugin, that supports chosen vector storage within the chosen RAG framework. Retrieving configuration should search for the provided text in the query as argument in the function and return found information with the stored meta data, like paragraph, section, page etc. Important: if for chosen RAG framework, there is no need in separation of search, separation of retrieving from the chosen vector storage, this step may be skipped and marked done. - [x] Create file `retrieval.py` with the configuration for chosen RAG framework, that will retrieve data from the vector storage based on the query. Use retrieving library/plugin, that supports chosen vector storage within the chosen RAG framework. Retrieving configuration should search for the provided text in the query as argument in the function and return found information with the stored meta data, like paragraph, section, page etc. Important: if for chosen RAG framework, there is no need in separation of search, separation of retrieving from the chosen vector storage, this step may be skipped and marked done.
# Phase 6 (chat feature, as agent, for usage in the cli) # Phase 6 (models strategy, loading env and update on using openai models)
- [ ] Create file `agent.py`, which will incorporate into itself agent, powered by the chat model. It should use integration with ollama, model specified in .env in property: OLLAMA_CHAT_MODEL - [x] Add `CHAT_STRATEGY`, `EMBEDDING_STRATEGY` fields to .env, possible values are "openai" or "ollama".
- [ ] Integrate this agent with the existing solution for retrieving, with retrieval.py - [x] Add `OPENAI_CHAT_URL`, `OPENAI_CHAT_KEY`, `OPENAI_EMBEDDING_MODEL`, `OPENAI_EMBEDDING_BASE_URL`, `OPENAI_EMBEDDING_API_KEY` values to .env.dist with dummy values and to .env with dummy values.
- [x] Add in all important .env wise places in the code loading .env file for it's variables
- [x] Create reusable function, that will return configuration for models. It will check CHAT_STRATEGY and load environment variables accordingly, and return config for usage.
- [x] Add this function everywhere in the codebase where chat or embedding models configuration needed
# Phase 7 (explicit logging and progressbar)
- [x] Add log of how many files currently being processed in enrichment. We need to see how many total to process and how many processed each time new document being processed. If it's possible, also add progressbar showing percentage and those numbers on top of logs.
# Phase 8 (chat feature, as agent, for usage in the cli)
- [ ] Create file `agent.py`, which will incorporate into itself agent, powered by the chat model. It should use integration with openai, env variables are configure
- [ ] Integrate this agent with the existing solution for retrieving, with retrieval.py, if it's possible in current chosen RAG framework
- [ ] Integrate this agent with the cli, as command to start chatting with the agent. If there is a built-in solution for console communication with the agent, initiate this on cli command. - [ ] Integrate this agent with the cli, as command to start chatting with the agent. If there is a built-in solution for console communication with the agent, initiate this on cli command.

View File

@@ -16,6 +16,7 @@ The system has been enhanced to properly handle Russian language documents with
### Architecture Components ### Architecture Components
- CLI entry point (`cli.py`) - CLI entry point (`cli.py`)
- Configuration module (`config.py`) - manages model strategies and environment variables
- Document enrichment module (`enrichment.py`) - Document enrichment module (`enrichment.py`)
- Vector storage configuration (`vector_storage.py`) - Vector storage configuration (`vector_storage.py`)
- Retrieval module (`retrieval.py`) - Retrieval module (`retrieval.py`)
@@ -57,9 +58,15 @@ The system has been enhanced to properly handle Russian language documents with
- Use appropriate log levels (DEBUG, INFO, WARNING, ERROR) - Use appropriate log levels (DEBUG, INFO, WARNING, ERROR)
### Environment Variables ### Environment Variables
- `CHAT_STRATEGY`: Strategy for chat models ("ollama" or "openai")
- `EMBEDDING_STRATEGY`: Strategy for embedding models ("ollama" or "openai")
- `OLLAMA_EMBEDDING_MODEL`: Name of the Ollama model to use for embeddings - `OLLAMA_EMBEDDING_MODEL`: Name of the Ollama model to use for embeddings
- `OLLAMA_CHAT_MODEL`: Name of the Ollama model to use for chat functionality - `OLLAMA_CHAT_MODEL`: Name of the Ollama model to use for chat functionality
- API keys for external services (OpenRouter option available but commented out) - `OPENAI_CHAT_URL`: URL for OpenAI-compatible chat API (when using OpenAI strategy)
- `OPENAI_CHAT_KEY`: API key for OpenAI-compatible chat API (when using OpenAI strategy)
- `OPENAI_EMBEDDING_MODEL`: Name of the OpenAI embedding model (when using OpenAI strategy)
- `OPENAI_EMBEDDING_BASE_URL`: Base URL for OpenAI-compatible embedding API (when using OpenAI strategy)
- `OPENAI_EMBEDDING_API_KEY`: API key for OpenAI-compatible embedding API (when using OpenAI strategy)
### Document Processing ### Document Processing
- Support multiple file formats based on EXTENSIONS.md - Support multiple file formats based on EXTENSIONS.md
@@ -105,7 +112,19 @@ The system has been enhanced to properly handle Russian language documents with
- [x] Query processing with metadata retrieval - [x] Query processing with metadata retrieval
- [x] Russian language/Cyrillic text encoding support - [x] Russian language/Cyrillic text encoding support
### Phase 6: Chat Agent ### Phase 6: Model Strategy
- [x] Add `CHAT_STRATEGY` and `EMBEDDING_STRATEGY` environment variables
- [x] Add OpenAI configuration options to .env files
- [x] Create reusable model configuration function
- [x] Update all modules to use the new configuration system
- [x] Ensure proper .env loading across all modules
### Phase 7: Enhanced Logging and Progress Tracking
- [x] Added progress bar using tqdm to show processing progress
- [x] Added logging to show total files and processed count during document enrichment
- [x] Enhanced user feedback during document processing with percentage and counts
### Phase 8: Chat Agent
- [ ] Agent module with Ollama integration - [ ] Agent module with Ollama integration
- [ ] Integration with retrieval module - [ ] Integration with retrieval module
- [ ] CLI command for chat functionality - [ ] CLI command for chat functionality
@@ -115,9 +134,10 @@ The system has been enhanced to properly handle Russian language documents with
llamaindex/ llamaindex/
├── venv/ # Python virtual environment ├── venv/ # Python virtual environment
├── cli.py # CLI entry point ├── cli.py # CLI entry point
├── config.py # Configuration module for model strategies
├── vector_storage.py # Vector storage configuration ├── vector_storage.py # Vector storage configuration
├── enrichment.py # Document loading and processing (to be created) ├── enrichment.py # Document loading and processing
├── retrieval.py # Search and retrieval functionality (to be created) ├── retrieval.py # Search and retrieval functionality
├── agent.py # Chat agent implementation (to be created) ├── agent.py # Chat agent implementation (to be created)
├── EXTENSIONS.md # Supported file extensions and loaders ├── EXTENSIONS.md # Supported file extensions and loaders
├── .env.dist # Environment variable template ├── .env.dist # Environment variable template
@@ -140,4 +160,8 @@ The system expects documents to be placed in `./../../../data` relative to the p
- Verify Qdrant is accessible on ports 6333 (REST) and 6334 (gRPC) - Verify Qdrant is accessible on ports 6333 (REST) and 6334 (gRPC)
- Check that the data directory contains supported file types - Check that the data directory contains supported file types
- Review logs in `logs/dev.log` for detailed error information - Review logs in `logs/dev.log` for detailed error information
- For Russian/Cyrillic text issues, ensure proper encoding handling is configured in both enrichment and retrieval modules - For Russian/Cyrillic text issues, ensure proper encoding handling is configured in both enrichment and retrieval modules
## Important Notes
- Do not test long-running or heavy system scripts during development as they can consume significant system resources and take hours to complete
- The enrich command processes all files in the data directory and may require substantial memory and processing time

View File

@@ -7,6 +7,10 @@ import click
from loguru import logger from loguru import logger
import sys import sys
from pathlib import Path from pathlib import Path
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
def setup_logging(): def setup_logging():

View File

@@ -0,0 +1,144 @@
"""
Configuration module for managing model strategies in the RAG solution.
This module provides functions to get appropriate model configurations
based on environment variables for both embeddings and chat models.
"""
import os
from dotenv import load_dotenv
from loguru import logger
# Load environment variables from .env file
load_dotenv()
def get_embedding_model():
"""
Get the appropriate embedding model based on the EMBEDDING_STRATEGY environment variable.
Returns:
An embedding model instance based on the selected strategy
"""
strategy = os.getenv("EMBEDDING_STRATEGY", "ollama").lower()
if strategy == "ollama":
from llama_index.embeddings.ollama import OllamaEmbedding
ollama_embed_model = os.getenv("OLLAMA_EMBEDDING_MODEL", "qwen3-embedding:4b")
ollama_base_url = "http://localhost:11434"
logger.info(f"Initializing Ollama embedding model: {ollama_embed_model}")
embed_model = OllamaEmbedding(
model_name=ollama_embed_model, base_url=ollama_base_url
)
return embed_model
elif strategy == "openai":
from llama_index.embeddings.openai_like import OpenAILikeEmbedding
openai_base_url = os.getenv(
"OPENAI_EMBEDDING_BASE_URL", "https://api.openai.com/v1"
)
openai_api_key = os.getenv("OPENAI_EMBEDDING_API_KEY", "dummy_key_for_template")
openai_embed_model = os.getenv(
"OPENAI_EMBEDDING_MODEL", "text-embedding-3-small"
)
# Set the API key in environment for OpenAI
os.environ["OPENAI_API_KEY"] = openai_api_key
logger.info(f"Initializing OpenAI embedding model: {openai_embed_model}")
embed_model = OpenAILikeEmbedding(
model_name=openai_embed_model,
api_base=openai_base_url,
api_key=openai_api_key,
)
return embed_model
else:
raise ValueError(
f"Unsupported EMBEDDING_STRATEGY: {strategy}. Supported values are 'ollama' and 'openai'"
)
def get_llm_model():
"""
Get the appropriate LLM model based on the CHAT_STRATEGY environment variable.
Returns:
An LLM model instance based on the selected strategy
"""
strategy = os.getenv("CHAT_STRATEGY", "ollama").lower()
if strategy == "ollama":
from llama_index.llms.ollama import Ollama
ollama_chat_model = os.getenv("OLLAMA_CHAT_MODEL", "nemotron-mini:4b")
ollama_base_url = "http://localhost:11434"
logger.info(f"Initializing Ollama chat model: {ollama_chat_model}")
llm = Ollama(
model=ollama_chat_model,
base_url=ollama_base_url,
request_timeout=120.0, # Increase timeout for longer responses
)
return llm
elif strategy == "openai":
from llama_index.llms.openai import OpenAI
openai_chat_url = os.getenv("OPENAI_CHAT_URL", "https://api.openai.com/v1")
openai_chat_key = os.getenv("OPENAI_CHAT_KEY", "dummy_key_for_template")
openai_chat_model = os.getenv("OPENAI_CHAT_MODEL", "gpt-3.5-turbo")
# Set the API key in environment for OpenAI
os.environ["OPENAI_API_KEY"] = openai_chat_key
logger.info(f"Initializing OpenAI chat model: {openai_chat_model}")
llm = OpenAI(model=openai_chat_model, api_base=openai_chat_url)
return llm
else:
raise ValueError(
f"Unsupported CHAT_STRATEGY: {strategy}. Supported values are 'ollama' and 'openai'"
)
def get_model_configurations():
"""
Get both embedding and LLM model configurations based on environment variables.
Returns:
A tuple of (embedding_model, llm_model)
"""
embed_model = get_embedding_model()
llm_model = get_llm_model()
return embed_model, llm_model
def setup_global_models():
"""
Set up the global models in LlamaIndex Settings to prevent defaulting to OpenAI.
"""
from llama_index.core import Settings
embed_model, llm_model = get_model_configurations()
# Set as the global embedding model
Settings.embed_model = embed_model
# Set as the global LLM
Settings.llm = llm_model
logger.info("Global models configured successfully based on environment variables")

View File

@@ -13,6 +13,7 @@ from typing import List, Dict, Any
from datetime import datetime from datetime import datetime
import sqlite3 import sqlite3
from loguru import logger from loguru import logger
from tqdm import tqdm
from llama_index.core import SimpleDirectoryReader, Document from llama_index.core import SimpleDirectoryReader, Document
from llama_index.core.node_parser import SentenceSplitter, CodeSplitter from llama_index.core.node_parser import SentenceSplitter, CodeSplitter
@@ -20,6 +21,9 @@ from llama_index.core.node_parser import SentenceSplitter, CodeSplitter
from vector_storage import get_vector_store_and_index from vector_storage import get_vector_store_and_index
# Import the new configuration module
from config import get_embedding_model
class DocumentTracker: class DocumentTracker:
"""Class to handle tracking of processed documents to avoid re-processing.""" """Class to handle tracking of processed documents to avoid re-processing."""
@@ -259,13 +263,18 @@ def process_documents_from_data_folder(data_path: str = "../../../data", recursi
processed_count = 0 processed_count = 0
skipped_count = 0 skipped_count = 0
# Initialize progress bar
pbar = tqdm(total=len(all_files), desc="Processing documents", unit="file")
for file_path in all_files: for file_path in all_files:
logger.info(f"Processing file: {file_path}") logger.info(f"Processing file: {file_path} ({processed_count + skipped_count + 1}/{len(all_files)})")
# Check if document has already been processed # Check if document has already been processed
if tracker.is_document_processed(file_path): if tracker.is_document_processed(file_path):
logger.info(f"Skipping already processed file: {file_path}") logger.info(f"Skipping already processed file: {file_path}")
skipped_count += 1 skipped_count += 1
pbar.set_postfix({"Processed": processed_count, "Skipped": skipped_count})
pbar.update(1)
continue continue
try: try:
@@ -344,11 +353,15 @@ def process_documents_from_data_folder(data_path: str = "../../../data", recursi
# Mark document as processed only after successful insertion # Mark document as processed only after successful insertion
tracker.mark_document_processed(file_path, {"nodes_count": len(documents)}) tracker.mark_document_processed(file_path, {"nodes_count": len(documents)})
processed_count += 1 processed_count += 1
pbar.set_postfix({"Processed": processed_count, "Skipped": skipped_count})
except Exception as e: except Exception as e:
logger.error(f"Error processing file {file_path}: {str(e)}") logger.error(f"Error processing file {file_path}: {str(e)}")
continue
# Update progress bar regardless of success or failure
pbar.update(1)
pbar.close()
logger.info(f"Document enrichment completed. Processed: {processed_count}, Skipped: {skipped_count}") logger.info(f"Document enrichment completed. Processed: {processed_count}, Skipped: {skipped_count}")

View File

@@ -0,0 +1,71 @@
from typing import List
import requests
from llama_index.core.embeddings import BaseEmbedding
from pydantic import Field
class OpenAICompatibleEmbedding(BaseEmbedding):
model: str = Field(...)
api_key: str = Field(...)
api_base: str = Field(...)
timeout: int = Field(default=60)
def __init__(
self,
model: str,
api_key: str,
api_base: str,
timeout: int = 60,
):
self.model = model
self.api_key = api_key
self.api_base = api_base.rstrip("/")
self.timeout = timeout
# ---------- low-level call ----------
def _embed(self, texts: List[str]) -> List[List[float]]:
url = f"{self.api_base}/embeddings"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = {
"model": self.model,
"input": texts,
}
resp = requests.post(
url,
headers=headers,
json=payload,
timeout=self.timeout,
)
resp.raise_for_status()
data = resp.json()
return [item["embedding"] for item in data["data"]]
# ---------- document embeddings ----------
def _get_text_embedding(self, text: str) -> List[float]:
return self._embed([text])[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
return self._embed(texts)
async def _aget_text_embedding(self, text: str) -> List[float]:
return self._get_text_embedding(text)
async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
return self._get_text_embeddings(texts)
# ---------- query embeddings (REQUIRED) ----------
def _get_query_embedding(self, query: str) -> List[float]:
# bge-m3 uses same embedding for query & doc
return self._embed([query])[0]
async def _aget_query_embedding(self, query: str) -> List[float]:
return self._get_query_embedding(query)

View File

@@ -16,33 +16,8 @@ from pathlib import Path
from vector_storage import get_vector_store_and_index from vector_storage import get_vector_store_and_index
# Import the new configuration module
from llama_index.embeddings.ollama import OllamaEmbedding from config import setup_global_models
import os
def setup_global_models():
"""Set up the global models to prevent defaulting to OpenAI."""
# Set up the embedding model
ollama_embed_model = os.getenv("OLLAMA_EMBEDDING_MODEL", "qwen3-embedding:4b")
ollama_base_url = "http://localhost:11434"
embed_model = OllamaEmbedding(
model_name=ollama_embed_model,
base_url=ollama_base_url
)
# Set as the global embedding model
Settings.embed_model = embed_model
# Set up the LLM model
ollama_chat_model = os.getenv("OLLAMA_CHAT_MODEL", "nemotron-mini:4b")
from llama_index.llms.ollama import Ollama
llm = Ollama(model=ollama_chat_model, base_url=ollama_base_url)
# Set as the global LLM
Settings.llm = llm
def initialize_retriever( def initialize_retriever(

View File

@@ -3,18 +3,20 @@ Vector storage configuration for the RAG solution using LlamaIndex and Qdrant.
This module provides initialization and configuration for: This module provides initialization and configuration for:
- Qdrant vector storage connection - Qdrant vector storage connection
- Ollama embedding model - Embedding model based on configured strategy
- Automatic collection creation - Automatic collection creation
""" """
import os import os
from typing import Optional from typing import Optional
from llama_index.core import VectorStoreIndex from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from qdrant_client import QdrantClient
from loguru import logger from loguru import logger
from qdrant_client import QdrantClient
# Import the new configuration module
from config import get_embedding_model
def initialize_vector_storage( def initialize_vector_storage(
@@ -22,41 +24,29 @@ def initialize_vector_storage(
host: str = "localhost", host: str = "localhost",
port: int = 6333, port: int = 6333,
grpc_port: int = 6334, grpc_port: int = 6334,
ollama_base_url: str = "http://localhost:11434",
ollama_embed_model: Optional[str] = None
) -> tuple[QdrantVectorStore, VectorStoreIndex]: ) -> tuple[QdrantVectorStore, VectorStoreIndex]:
""" """
Initialize Qdrant vector storage with Ollama embeddings. Initialize Qdrant vector storage with embedding model based on configured strategy.
Args: Args:
collection_name: Name of the Qdrant collection collection_name: Name of the Qdrant collection
host: Qdrant host address host: Qdrant host address
port: Qdrant REST API port port: Qdrant REST API port
grpc_port: Qdrant gRPC API port grpc_port: Qdrant gRPC API port
ollama_base_url: Base URL for Ollama API
ollama_embed_model: Name of the Ollama embedding model
Returns: Returns:
Tuple of (QdrantVectorStore, VectorStoreIndex) Tuple of (QdrantVectorStore, VectorStoreIndex)
""" """
logger.info(f"Initializing vector storage with collection: {collection_name}") logger.info(f"Initializing vector storage with collection: {collection_name}")
# Get embedding model from environment if not provided
if ollama_embed_model is None:
ollama_embed_model = os.getenv("OLLAMA_EMBEDDING_MODEL", "qwen3-embedding:4b")
logger.info(f"Using Ollama embedding model: {ollama_embed_model}")
try: try:
# Initialize Qdrant client # Initialize Qdrant client
client = QdrantClient(host=host, port=port) client = QdrantClient(host=host, port=port)
# Initialize the embedding model first to get the correct dimensions # Get the embedding model based on the configured strategy
embed_model = OllamaEmbedding( embed_model = get_embedding_model()
model_name=ollama_embed_model,
base_url=ollama_base_url # Get a test embedding to determine the correct dimensions
)
# Get a test embedding to determine the correct size
test_embedding = embed_model.get_text_embedding("test") test_embedding = embed_model.get_text_embedding("test")
embedding_dimension = len(test_embedding) embedding_dimension = len(test_embedding)
logger.info(f"Detected embedding dimension: {embedding_dimension}") logger.info(f"Detected embedding dimension: {embedding_dimension}")
@@ -71,55 +61,66 @@ def initialize_vector_storage(
collection_name=collection_name, collection_name=collection_name,
vectors_config={ vectors_config={
"size": embedding_dimension, # Use the actual embedding size "size": embedding_dimension, # Use the actual embedding size
"distance": "Cosine" # Cosine distance is commonly used "distance": "Cosine", # Cosine distance is commonly used
} },
)
logger.info(
f"Collection '{collection_name}' created successfully with dimension {embedding_dimension}"
) )
logger.info(f"Collection '{collection_name}' created successfully with dimension {embedding_dimension}")
else: else:
logger.info(f"Collection '{collection_name}' already exists") logger.info(f"Collection '{collection_name}' already exists")
# Get the actual collection config to determine the vector size # Get the actual collection config to determine the vector size
collection_info = client.get_collection(collection_name) collection_info = client.get_collection(collection_name)
# Access the vector configuration properly - handle different possible structures # Access the vector configuration properly - handle different possible structures
if hasattr(collection_info.config.params, 'vectors') and collection_info.config.params.vectors is not None: if (
hasattr(collection_info.config.params, "vectors")
and collection_info.config.params.vectors is not None
):
existing_dimension = collection_info.config.params.vectors.size existing_dimension = collection_info.config.params.vectors.size
if existing_dimension != embedding_dimension: if existing_dimension != embedding_dimension:
logger.warning(f"Existing collection dimension ({existing_dimension}) doesn't match embedding dimension ({embedding_dimension}), recreating...") logger.warning(
f"Existing collection dimension ({existing_dimension}) doesn't match embedding dimension ({embedding_dimension}), recreating..."
)
# Delete and recreate the collection with the correct dimensions # Delete and recreate the collection with the correct dimensions
client.delete_collection(collection_name) client.delete_collection(collection_name)
client.create_collection( client.create_collection(
collection_name=collection_name, collection_name=collection_name,
vectors_config={ vectors_config={
"size": embedding_dimension, # Use the detected size "size": embedding_dimension, # Use the detected size
"distance": "Cosine" "distance": "Cosine",
} },
)
logger.info(
f"Collection '{collection_name}' recreated with dimension {embedding_dimension}"
) )
logger.info(f"Collection '{collection_name}' recreated with dimension {embedding_dimension}")
else: else:
logger.info(f"Using existing collection with matching dimension: {embedding_dimension}") logger.info(
f"Using existing collection with matching dimension: {embedding_dimension}"
)
else: else:
# Last resort: recreate the collection with the correct dimensions # Last resort: recreate the collection with the correct dimensions
logger.warning(f"Could not determine vector dimension for existing collection, recreating...") logger.warning(
f"Could not determine vector dimension for existing collection, recreating..."
)
# Delete and recreate the collection with the correct dimensions # Delete and recreate the collection with the correct dimensions
client.delete_collection(collection_name) client.delete_collection(collection_name)
client.create_collection( client.create_collection(
collection_name=collection_name, collection_name=collection_name,
vectors_config={ vectors_config={
"size": embedding_dimension, # Use the detected size "size": embedding_dimension, # Use the detected size
"distance": "Cosine" "distance": "Cosine",
} },
)
logger.info(
f"Collection '{collection_name}' recreated with dimension {embedding_dimension}"
) )
logger.info(f"Collection '{collection_name}' recreated with dimension {embedding_dimension}")
# Initialize the Qdrant vector store # Initialize the Qdrant vector store
vector_store = QdrantVectorStore( vector_store = QdrantVectorStore(client=client, collection_name=collection_name)
client=client,
collection_name=collection_name
)
# Create index from vector store with the embedding model we already created # Create index from vector store with the embedding model we already created
index = VectorStoreIndex.from_vector_store( index = VectorStoreIndex.from_vector_store(
vector_store=vector_store, vector_store=vector_store, embed_model=embed_model
embed_model=embed_model
) )
logger.info("Vector storage initialized successfully") logger.info("Vector storage initialized successfully")
@@ -130,21 +131,6 @@ def initialize_vector_storage(
raise raise
# Optional: Alternative embedding configuration using OpenAI via OpenRouter
# Uncomment and configure as needed for future use
# from llama_index.embeddings.openai import OpenAIEmbedding
#
# def initialize_openai_embeddings():
# # Use OpenRouter API key from environment
# os.environ["OPENAI_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
#
# embed_model = OpenAIEmbedding(
# model="openai/text-embedding-3-small", # Or another suitable model
# api_base="https://openrouter.ai/api/v1" # OpenRouter endpoint
# )
# return embed_model
def get_vector_store_and_index() -> tuple[QdrantVectorStore, VectorStoreIndex]: def get_vector_store_and_index() -> tuple[QdrantVectorStore, VectorStoreIndex]:
""" """
Convenience function to get the initialized vector store and index. Convenience function to get the initialized vector store and index.
@@ -152,9 +138,7 @@ def get_vector_store_and_index() -> tuple[QdrantVectorStore, VectorStoreIndex]:
Returns: Returns:
Tuple of (QdrantVectorStore, VectorStoreIndex) Tuple of (QdrantVectorStore, VectorStoreIndex)
""" """
# Get the embedding model name from environment variables return initialize_vector_storage()
embed_model_name = os.getenv("OLLAMA_EMBEDDING_MODEL", "qwen3-embedding:4b")
return initialize_vector_storage(ollama_embed_model=embed_model_name)
if __name__ == "__main__": if __name__ == "__main__":

145
unzip_archives.sh Executable file
View File

@@ -0,0 +1,145 @@
#!/bin/bash
# Script to recursively unzip archives in the data folder
# Valid archives are extracted in place, then moved to data-unpacked-archives
# Invalid/broken archives are moved to data-broken-archives
set -e # Exit on any error
DATA_DIR="./data"
UNPACKED_DIR="./data-unpacked-archives"
BROKEN_DIR="./data-broken-archives"
# Create destination directories if they don't exist
mkdir -p "$UNPACKED_DIR"
mkdir -p "$BROKEN_DIR"
# Find all zip files recursively in the data directory
find "$DATA_DIR" -type f -name "*.zip" | while read -r archive; do
echo "Processing: $archive"
# Check if the zip file is valid and not password protected
if unzip -t "$archive" >/dev/null 2>&1; then
echo " Archive is valid, extracting..."
# Extract the archive in the same directory where it's located
ARCHIVE_DIR=$(dirname "$archive")
unzip -o "$archive" -d "$ARCHIVE_DIR"
# Move the processed archive to the unpacked directory
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted and moved to $UNPACKED_DIR"
else
echo " Archive is invalid, password-protected, or in unsupported format"
# Move the broken archive to the broken directory
mv "$archive" "$BROKEN_DIR/"
echo " Moved to $BROKEN_DIR"
fi
done
# Also handle other common archive formats that might be present
for ext in rar 7z tar.gz tar.xz tar.bz2 gz xz bz2 tar; do
find "$DATA_DIR" -type f -name "*.$ext" | while read -r archive; do
echo "Processing: $archive (non-zip format)"
case $ext in
rar)
if command -v unrar >/dev/null 2>&1; then
if unrar l "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
unrar x "$archive" "$ARCHIVE_DIR"/
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted RAR and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process RAR, moved to $BROKEN_DIR"
fi
else
mv "$archive" "$BROKEN_DIR/"
echo " unrar not available, moved to $BROKEN_DIR"
fi
;;
7z)
if command -v 7z >/dev/null 2>&1; then
if 7z l "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
7z x "$archive" -o"$ARCHIVE_DIR"/
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted 7z and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process 7z, moved to $BROKEN_DIR"
fi
else
mv "$archive" "$BROKEN_DIR/"
echo " 7z not available, moved to $BROKEN_DIR"
fi
;;
tar.gz|tgz|gz)
if gunzip -t "$archive" >/dev/null 2>&1 || tar -tzf "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
if [[ "$ext" == "gz" ]]; then
# For gz files, we need to decompress in place
cp "$archive" "$ARCHIVE_DIR/"
gzip -d "$ARCHIVE_DIR/$(basename "$archive")"
else
tar -xzf "$archive" -C "$ARCHIVE_DIR"/
fi
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted $ext and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process $ext, moved to $BROKEN_DIR"
fi
;;
tar.bz2|bz2)
if bzip2 -t "$archive" >/dev/null 2>&1 || tar -tjf "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
if [[ "$ext" == "bz2" ]]; then
# For bz2 files, we need to decompress in place
cp "$archive" "$ARCHIVE_DIR/"
bzip2 -d "$ARCHIVE_DIR/$(basename "$archive")"
else
tar -xjf "$archive" -C "$ARCHIVE_DIR"/
fi
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted $ext and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process $ext, moved to $BROKEN_DIR"
fi
;;
tar.xz|xz)
if xz -t "$archive" >/dev/null 2>&1 || tar -tJf "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
if [[ "$ext" == "xz" ]]; then
# For xz files, we need to decompress in place
cp "$archive" "$ARCHIVE_DIR/"
xz -d "$ARCHIVE_DIR/$(basename "$archive")"
else
tar -xJf "$archive" -C "$ARCHIVE_DIR"/
fi
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted $ext and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process $ext, moved to $BROKEN_DIR"
fi
;;
tar)
if tar -tf "$archive" >/dev/null 2>&1; then
ARCHIVE_DIR=$(dirname "$archive")
tar -xf "$archive" -C "$ARCHIVE_DIR"/
mv "$archive" "$UNPACKED_DIR/"
echo " Successfully extracted TAR and moved to $UNPACKED_DIR"
else
mv "$archive" "$BROKEN_DIR/"
echo " Could not process TAR, moved to $BROKEN_DIR"
fi
;;
esac
done
done
echo "Processing complete!"