Compare commits
2 Commits
ea4ce23cd9
...
bf3a3735cb
| Author | SHA1 | Date | |
|---|---|---|---|
| bf3a3735cb | |||
| ae8c00316e |
@@ -1,2 +1,5 @@
|
||||
OLLAMA_EMBEDDING_MODEL=MODEL
|
||||
OLLAMA_CHAT_MODEL=MODEL
|
||||
OPENAI_CHAT_URL=URL
|
||||
OPENAI_CHAT_KEY=KEY
|
||||
CHAT_MODEL_STRATEGY=ollama
|
||||
|
||||
@@ -39,3 +39,12 @@ Chosen data folder: relatve ./../../../data - from the current folder
|
||||
- [x] Create file `agent.py`, which will incorporate into itself agent, powered by the chat model. It should use integration with ollama, model specified in .env in property: OLLAMA_CHAT_MODEL
|
||||
- [x] Integrate this agent with the existing solution for retrieving, with retrieval.py
|
||||
- [x] Integrate this agent with the cli, as command to start chatting with the agent. If there is a built-in solution for console communication with the agent, initiate this on cli command.
|
||||
|
||||
# Phase 7 (openai integration for chat model)
|
||||
- [x] Create openai integration, with using .env variables `OPENAI_CHAT_URL`, `OPENAI_CHAT_KEY`. First one for openai compatible URL, second one for Authorization Bearer token.
|
||||
- [x] Make this integration optional, with using .env variable `CHAT_MODEL_STRATEGY`. There can be 2 options: "ollama", "openai". Ollama currently already done and working, so we should write code for checking which option is chosen in .env, with ollama being the default.
|
||||
|
||||
# Phase 8 (http endpoint to retrieve data from the vector storage by query)
|
||||
|
||||
- [ ] Create file `server.py`, with web framework fastapi, for example
|
||||
- [ ] Add POST endpoint "/api/test-query" which will use agent, and retrieve response for query, sent in JSON format, field "query"
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
## Project Overview
|
||||
|
||||
This is a Retrieval-Augmented Generation (RAG) solution built using the Langchain framework. The project is designed to load documents from a data directory, store them in a vector database (Qdrant), and enable semantic search and chat capabilities using local LLMs via Ollama.
|
||||
This is a Retrieval-Augmented Generation (RAG) solution built using the Langchain framework. The project is designed to load documents from a data directory, store them in a vector database (Qdrant), and enable semantic search and chat capabilities using local LLMs via Ollama or OpenAI-compatible APIs.
|
||||
|
||||
The project follows a phased development approach with CLI entry points for different functionalities like document loading, retrieval, and chat.
|
||||
|
||||
@@ -10,7 +10,7 @@ The project follows a phased development approach with CLI entry points for diff
|
||||
- **Framework**: Langchain
|
||||
- **Vector Storage**: Qdrant
|
||||
- **Embeddings**: Ollama (with fallback option for OpenAI via OpenRouter)
|
||||
- **Chat Models**: Ollama
|
||||
- **Chat Models**: Ollama and OpenAI-compatible APIs
|
||||
- **Data Directory**: `./../../../data` (relative to project root)
|
||||
- **Virtual Environment**: Python venv in `venv/` directory
|
||||
|
||||
@@ -35,7 +35,7 @@ rag-solution/services/rag/langchain/
|
||||
## Dependencies
|
||||
|
||||
The project relies on several key libraries:
|
||||
- `langchain` and related ecosystem (`langchain-community`, `langchain-core`, `langchain-ollama`)
|
||||
- `langchain` and related ecosystem (`langchain-community`, `langchain-core`, `langchain-ollama`, `langchain-openai`)
|
||||
- `langgraph` for workflow management
|
||||
- `qdrant-client` for vector storage (to be installed)
|
||||
- `ollama` for local LLM interaction
|
||||
@@ -45,7 +45,7 @@ The project relies on several key libraries:
|
||||
|
||||
## Development Phases
|
||||
|
||||
The project is organized into 6 development phases as outlined in `PLANNING.md`:
|
||||
The project is organized into 8 development phases as outlined in `PLANNING.md`:
|
||||
|
||||
### Phase 1: CLI Entrypoint
|
||||
- [x] Virtual environment setup
|
||||
@@ -79,6 +79,14 @@ The project is organized into 6 development phases as outlined in `PLANNING.md`:
|
||||
- [x] Integrate with retrieval functionality
|
||||
- [x] Add CLI command for chat interaction
|
||||
|
||||
### Phase 7: OpenAI Integration for Chat Model
|
||||
- [x] Create OpenAI-compatible integration using `.env` variables `OPENAI_CHAT_URL` and `OPENAI_CHAT_KEY`
|
||||
- [x] Make this integration optional using `.env` variable `CHAT_MODEL_STRATEGY` with "ollama" as default
|
||||
- [x] Allow switching between "ollama" and "openai" strategies
|
||||
|
||||
### Phase 8: HTTP Endpoint
|
||||
- [ ] Create web framework with POST endpoint `/api/test-query` for agent queries
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
The project uses environment variables for configuration:
|
||||
@@ -86,6 +94,10 @@ The project uses environment variables for configuration:
|
||||
```env
|
||||
OLLAMA_EMBEDDING_MODEL=MODEL # Name of the Ollama model for embeddings
|
||||
OLLAMA_CHAT_MODEL=MODEL # Name of the Ollama model for chat
|
||||
OPENAI_CHAT_URL=URL # OpenAI-compatible API URL
|
||||
OPENAI_CHAT_KEY=KEY # Authorization token for OpenAI-compatible API
|
||||
OPENAI_CHAT_MODEL=MODEL # Name of the OpenAI-compatible model to use
|
||||
CHAT_MODEL_STRATEGY=ollama # Strategy to use: "ollama" (default) or "openai"
|
||||
```
|
||||
|
||||
## Building and Running
|
||||
@@ -176,6 +188,13 @@ The project is in early development phase. The virtual environment is set up and
|
||||
- Agent uses document retrieval tool to fetch relevant information based on user queries
|
||||
- Implemented proper error handling and conversation history management
|
||||
|
||||
### Phase 7 Implementation Notes
|
||||
- Enhanced `agent.py` to support both Ollama and OpenAI-compatible chat models
|
||||
- Added conditional logic to select chat model based on `CHAT_MODEL_STRATEGY` environment variable
|
||||
- When strategy is "openai", uses `ChatOpenAI` with `OPENAI_CHAT_URL` and `OPENAI_CHAT_KEY` from environment
|
||||
- When strategy is "ollama" (default), uses existing `ChatOllama` implementation
|
||||
- Updated CLI chat command to show which model strategy is being used
|
||||
|
||||
### Issue Fix Notes
|
||||
- Fixed DocumentRetrievalTool class to properly declare and initialize the retriever field
|
||||
- Resolved Pydantic field declaration issue that caused "object has no field" error
|
||||
|
||||
@@ -8,6 +8,7 @@ from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
|
||||
from langchain_core.agents import AgentFinish
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
from langchain_ollama import ChatOllama
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from loguru import logger
|
||||
|
||||
@@ -72,13 +73,39 @@ def create_chat_agent(
|
||||
|
||||
Args:
|
||||
collection_name: Name of the Qdrant collection to use
|
||||
llm_model: Name of the Ollama model to use (defaults to OLLAMA_CHAT_MODEL env var)
|
||||
llm_model: Name of the model to use (defaults to environment variable based on strategy)
|
||||
|
||||
Returns:
|
||||
Configured chat agent
|
||||
"""
|
||||
logger.info("Creating chat agent with document retrieval capabilities")
|
||||
|
||||
# Determine which model strategy to use
|
||||
chat_model_strategy = os.getenv("CHAT_MODEL_STRATEGY", "ollama").lower()
|
||||
|
||||
if chat_model_strategy == "openai":
|
||||
# Use OpenAI-compatible API
|
||||
openai_chat_url = os.getenv("OPENAI_CHAT_URL")
|
||||
openai_chat_key = os.getenv("OPENAI_CHAT_KEY")
|
||||
|
||||
if not openai_chat_url or not openai_chat_key:
|
||||
raise ValueError("OPENAI_CHAT_URL and OPENAI_CHAT_KEY must be set when using OpenAI strategy")
|
||||
|
||||
# Get the model name from environment if not provided
|
||||
if llm_model is None:
|
||||
llm_model = os.getenv("OPENAI_CHAT_MODEL", "gpt-3.5-turbo") # Default to a common model
|
||||
|
||||
# Initialize the OpenAI-compatible chat model
|
||||
llm = ChatOpenAI(
|
||||
model=llm_model,
|
||||
openai_api_base=openai_chat_url,
|
||||
openai_api_key=openai_chat_key,
|
||||
temperature=0.1,
|
||||
)
|
||||
|
||||
logger.info(f"Using OpenAI-compatible model: {llm_model} via {openai_chat_url}")
|
||||
else: # Default to ollama
|
||||
# Use Ollama
|
||||
# Get the model name from environment if not provided
|
||||
if llm_model is None:
|
||||
llm_model = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
|
||||
@@ -90,6 +117,8 @@ def create_chat_agent(
|
||||
temperature=0.1,
|
||||
)
|
||||
|
||||
logger.info(f"Using Ollama model: {llm_model}")
|
||||
|
||||
# Create the document retrieval tool
|
||||
retrieval_tool = DocumentRetrievalTool()
|
||||
|
||||
@@ -114,7 +143,7 @@ def chat_with_agent(
|
||||
Args:
|
||||
query: The user's query
|
||||
collection_name: Name of the Qdrant collection to use
|
||||
llm_model: Name of the Ollama model to use
|
||||
llm_model: Name of the model to use (defaults to environment variable based on strategy)
|
||||
history: Conversation history (list of messages)
|
||||
|
||||
Returns:
|
||||
@@ -191,10 +220,20 @@ def run_chat_loop(
|
||||
|
||||
Args:
|
||||
collection_name: Name of the Qdrant collection to use
|
||||
llm_model: Name of the Ollama model to use
|
||||
llm_model: Name of the model to use (defaults to environment variable based on strategy)
|
||||
"""
|
||||
logger.info("Starting interactive chat loop")
|
||||
print("Chat Agent initialized. Type 'quit' or 'exit' to end the conversation.\n")
|
||||
|
||||
# Determine which model strategy is being used and inform the user
|
||||
chat_model_strategy = os.getenv("CHAT_MODEL_STRATEGY", "ollama").lower()
|
||||
if chat_model_strategy == "openai":
|
||||
model_info = os.getenv("OPENAI_CHAT_MODEL", "gpt-3.5-turbo")
|
||||
print(f"Chat Agent initialized with OpenAI-compatible model: {model_info}")
|
||||
else:
|
||||
model_info = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
|
||||
print(f"Chat Agent initialized with Ollama model: {model_info}")
|
||||
|
||||
print("Type 'quit' or 'exit' to end the conversation.\n")
|
||||
|
||||
history = []
|
||||
|
||||
|
||||
@@ -28,7 +28,10 @@ langgraph==1.0.5
|
||||
langgraph-checkpoint==3.0.1
|
||||
langgraph-prebuilt==1.0.5
|
||||
langgraph-sdk==0.3.1
|
||||
langgraph-tools==1.0.20
|
||||
langsmith==0.5.2
|
||||
langserve==0.3.0
|
||||
langchain-openai==0.2.0
|
||||
marshmallow==3.26.2
|
||||
multidict==6.7.0
|
||||
mypy_extensions==1.1.0
|
||||
|
||||
Reference in New Issue
Block a user