- main feat: adaptation for async enrichment
- added file_type, this will hold the "таблица", "презентация" and so on types - file source metadata is now taken either from local source or yandex disk.
This commit is contained in:
@@ -2,13 +2,19 @@
|
||||
|
||||
import hashlib
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
from pathlib import Path
|
||||
from typing import Iterator, List, Tuple
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from langchain_community.document_loaders import PyPDFLoader
|
||||
from langchain_core.documents import Document
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from loguru import logger
|
||||
from sqlalchemy import Column, Integer, String, create_engine
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
# Dynamically import other loaders to handle optional dependencies
|
||||
try:
|
||||
@@ -35,14 +41,11 @@ try:
|
||||
from langchain_community.document_loaders import UnstructuredODTLoader
|
||||
except ImportError:
|
||||
UnstructuredODTLoader = None
|
||||
from loguru import logger
|
||||
from sqlalchemy import Column, Integer, String, create_engine
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from helpers import (
|
||||
LocalFilesystemAdaptiveCollection,
|
||||
YandexDiskAdaptiveCollection,
|
||||
YandexDiskAdaptiveFile,
|
||||
_AdaptiveCollection,
|
||||
_AdaptiveFile,
|
||||
extract_russian_event_names,
|
||||
@@ -52,7 +55,6 @@ from helpers import (
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
|
||||
# Define the path to the data directory
|
||||
DATA_DIR = Path("../../../data").resolve()
|
||||
DB_PATH = Path("document_tracking.db").resolve()
|
||||
@@ -61,6 +63,17 @@ ENRICHMENT_LOCAL_PATH = os.getenv("ENRICHMENT_LOCAL_PATH")
|
||||
ENRICHMENT_YADISK_PATH = os.getenv("ENRICHMENT_YADISK_PATH")
|
||||
YADISK_TOKEN = os.getenv("YADISK_TOKEN")
|
||||
|
||||
ENRICHMENT_PROCESSING_MODE = os.getenv("ENRICHMENT_PROCESSING_MODE", "async").lower()
|
||||
ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT = int(
|
||||
os.getenv("ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT", "5")
|
||||
)
|
||||
ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS = int(
|
||||
os.getenv("ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS", "4")
|
||||
)
|
||||
ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS = int(
|
||||
os.getenv("ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS", "4")
|
||||
)
|
||||
|
||||
SUPPORTED_EXTENSIONS = {
|
||||
".pdf",
|
||||
".docx",
|
||||
@@ -76,20 +89,9 @@ SUPPORTED_EXTENSIONS = {
|
||||
".tiff",
|
||||
".webp",
|
||||
".odt",
|
||||
".txt", # this one is obvious but was unexpected to see in data lol
|
||||
}
|
||||
|
||||
|
||||
def try_guess_source(extension: str) -> str:
|
||||
if extension in [".xlsx", "xls"]:
|
||||
return "таблица"
|
||||
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
return "изображение"
|
||||
elif extension in [".pptx"]:
|
||||
return "презентация"
|
||||
else:
|
||||
return "документ"
|
||||
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
|
||||
@@ -103,6 +105,25 @@ class ProcessedDocument(Base):
|
||||
file_hash = Column(String, nullable=False)
|
||||
|
||||
|
||||
# to guess the filetype in russian language, for searching it
|
||||
def try_guess_file_type(extension: str) -> str:
|
||||
if extension in [".xlsx", "xls"]:
|
||||
return "таблица"
|
||||
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
return "изображение"
|
||||
elif extension in [".pptx"]:
|
||||
return "презентация"
|
||||
else:
|
||||
return "документ"
|
||||
|
||||
|
||||
def identify_adaptive_file_source(adaptive_file: _AdaptiveFile) -> str:
|
||||
if adaptive_file is YandexDiskAdaptiveFile:
|
||||
return "Яндекс Диск"
|
||||
else:
|
||||
return "Локальный Файл"
|
||||
|
||||
|
||||
class DocumentEnricher:
|
||||
"""Class responsible for enriching documents and loading them to vector storage."""
|
||||
|
||||
@@ -114,6 +135,34 @@ class DocumentEnricher:
|
||||
length_function=len,
|
||||
)
|
||||
|
||||
# In sync mode we force minimal concurrency values.
|
||||
if ENRICHMENT_PROCESSING_MODE == "sync":
|
||||
self.adaptive_files_queue_limit = 1
|
||||
self.file_process_threads_count = 1
|
||||
self.document_upload_threads_count = 1
|
||||
else:
|
||||
self.adaptive_files_queue_limit = max(
|
||||
1, ENRICHMENT_ADAPTIVE_FILES_QUEUE_LIMIT
|
||||
)
|
||||
self.file_process_threads_count = max(
|
||||
1, ENRICHMENT_ADAPTIVE_FILE_PROCESS_THREADS
|
||||
)
|
||||
self.document_upload_threads_count = max(
|
||||
1, ENRICHMENT_ADAPTIVE_DOCUMENT_UPLOADS_THREADS
|
||||
)
|
||||
|
||||
# Phase 13 queues
|
||||
self.ADAPTIVE_FILES_QUEUE: queue.Queue = queue.Queue(
|
||||
maxsize=self.adaptive_files_queue_limit
|
||||
)
|
||||
self.PROCESSED_DOCUMENTS_QUEUE: queue.Queue = queue.Queue(
|
||||
maxsize=max(1, self.adaptive_files_queue_limit * 2)
|
||||
)
|
||||
|
||||
# Shared state for thread lifecycle
|
||||
self.collection_finished = threading.Event()
|
||||
self.processing_finished = threading.Event()
|
||||
|
||||
# Initialize database for tracking processed documents
|
||||
self._init_db()
|
||||
|
||||
@@ -121,30 +170,45 @@ class DocumentEnricher:
|
||||
"""Initialize the SQLite database for tracking processed documents."""
|
||||
self.engine = create_engine(f"sqlite:///{DB_PATH}")
|
||||
Base.metadata.create_all(self.engine)
|
||||
Session = sessionmaker(bind=self.engine)
|
||||
self.session = Session()
|
||||
self.SessionLocal = sessionmaker(bind=self.engine)
|
||||
|
||||
def _get_file_hash(self, file_path: str) -> str:
|
||||
"""Calculate SHA256 hash of a file."""
|
||||
hash_sha256 = hashlib.sha256()
|
||||
with open(file_path, "rb") as f:
|
||||
# Read file in chunks to handle large files
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
with open(file_path, "rb") as file_handle:
|
||||
for chunk in iter(lambda: file_handle.read(4096), b""):
|
||||
hash_sha256.update(chunk)
|
||||
return hash_sha256.hexdigest()
|
||||
|
||||
def _is_document_hash_processed(self, file_hash: str) -> bool:
|
||||
"""Check if a document hash has already been processed."""
|
||||
existing = (
|
||||
self.session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
|
||||
)
|
||||
return existing is not None
|
||||
session = self.SessionLocal()
|
||||
try:
|
||||
existing = (
|
||||
session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
|
||||
)
|
||||
return existing is not None
|
||||
finally:
|
||||
session.close()
|
||||
|
||||
def _mark_document_processed(self, file_identifier: str, file_hash: str):
|
||||
"""Mark a document as processed in the database."""
|
||||
doc_record = ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
|
||||
self.session.add(doc_record)
|
||||
self.session.commit()
|
||||
session = self.SessionLocal()
|
||||
try:
|
||||
existing = (
|
||||
session.query(ProcessedDocument)
|
||||
.filter_by(file_path=file_identifier)
|
||||
.first()
|
||||
)
|
||||
if existing is not None:
|
||||
existing.file_hash = file_hash
|
||||
else:
|
||||
session.add(
|
||||
ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
|
||||
)
|
||||
session.commit()
|
||||
finally:
|
||||
session.close()
|
||||
|
||||
def _get_loader_for_extension(self, file_path: str):
|
||||
"""Get the appropriate loader for a given file extension."""
|
||||
@@ -152,7 +216,7 @@ class DocumentEnricher:
|
||||
|
||||
if ext == ".pdf":
|
||||
return PyPDFLoader(file_path)
|
||||
elif ext in [".docx", ".doc"]:
|
||||
if ext in [".docx", ".doc"]:
|
||||
if UnstructuredWordDocumentLoader is None:
|
||||
logger.warning(
|
||||
f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping."
|
||||
@@ -161,7 +225,7 @@ class DocumentEnricher:
|
||||
return UnstructuredWordDocumentLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext == ".pptx":
|
||||
if ext == ".pptx":
|
||||
if UnstructuredPowerPointLoader is None:
|
||||
logger.warning(
|
||||
f"UnstructuredPowerPointLoader not available for {file_path}. Skipping."
|
||||
@@ -170,7 +234,7 @@ class DocumentEnricher:
|
||||
return UnstructuredPowerPointLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext in [".xlsx", ".xls"]:
|
||||
if ext in [".xlsx", ".xls"]:
|
||||
if UnstructuredExcelLoader is None:
|
||||
logger.warning(
|
||||
f"UnstructuredExcelLoader not available for {file_path}. Skipping."
|
||||
@@ -179,17 +243,16 @@ class DocumentEnricher:
|
||||
return UnstructuredExcelLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
if ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
if UnstructuredImageLoader is None:
|
||||
logger.warning(
|
||||
f"UnstructuredImageLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
# Use OCR strategy for images to extract text
|
||||
return UnstructuredImageLoader(
|
||||
file_path, **{"strategy": "ocr_only", "languages": ["rus"]}
|
||||
)
|
||||
elif ext == ".odt":
|
||||
if ext == ".odt":
|
||||
if UnstructuredODTLoader is None:
|
||||
logger.warning(
|
||||
f"UnstructuredODTLoader not available for {file_path}. Skipping."
|
||||
@@ -198,20 +261,20 @@ class DocumentEnricher:
|
||||
return UnstructuredODTLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
else:
|
||||
return None
|
||||
return None
|
||||
|
||||
def _load_one_adaptive_file(
|
||||
self, adaptive_file: _AdaptiveFile
|
||||
) -> Tuple[List[Document], str | None]:
|
||||
) -> Tuple[List[Document], Optional[Tuple[str, str]]]:
|
||||
"""Load and split one adaptive file by using its local working callback."""
|
||||
loaded_docs: List[Document] = []
|
||||
file_hash: str | None = None
|
||||
source_identifier = try_guess_source(adaptive_file.extension)
|
||||
processed_record: Optional[Tuple[str, str]] = None
|
||||
source_identifier = identify_adaptive_file_source(adaptive_file)
|
||||
extension = adaptive_file.extension.lower()
|
||||
file_type = try_guess_file_type(extension)
|
||||
|
||||
def process_local_file(local_file_path: str):
|
||||
nonlocal loaded_docs, file_hash
|
||||
nonlocal loaded_docs, processed_record
|
||||
|
||||
file_hash = self._get_file_hash(local_file_path)
|
||||
if self._is_document_hash_processed(file_hash):
|
||||
@@ -227,6 +290,7 @@ class DocumentEnricher:
|
||||
|
||||
docs = loader.load()
|
||||
for doc in docs:
|
||||
doc.metadata["file_type"] = file_type
|
||||
doc.metadata["source"] = source_identifier
|
||||
doc.metadata["filename"] = adaptive_file.filename
|
||||
doc.metadata["file_path"] = source_identifier
|
||||
@@ -238,91 +302,145 @@ class DocumentEnricher:
|
||||
|
||||
split_docs = self.text_splitter.split_documents(docs)
|
||||
for chunk in split_docs:
|
||||
years = extract_years_from_text(chunk.page_content)
|
||||
events = extract_russian_event_names(chunk.page_content)
|
||||
chunk.metadata["years"] = years
|
||||
chunk.metadata["events"] = events
|
||||
chunk.metadata["years"] = extract_years_from_text(chunk.page_content)
|
||||
chunk.metadata["events"] = extract_russian_event_names(
|
||||
chunk.page_content
|
||||
)
|
||||
|
||||
loaded_docs = split_docs
|
||||
processed_record = (source_identifier, file_hash)
|
||||
|
||||
adaptive_file.work_with_file_locally(process_local_file)
|
||||
return loaded_docs, file_hash
|
||||
return loaded_docs, processed_record
|
||||
|
||||
def load_and_split_documents(
|
||||
# Phase 13 API: inserts adaptive files into ADAPTIVE_FILES_QUEUE
|
||||
def insert_adaptive_files_queue(
|
||||
self, adaptive_collection: _AdaptiveCollection, recursive: bool = True
|
||||
) -> Iterator[Tuple[List[Document], List[Tuple[str, str]]]]:
|
||||
"""Load documents from adaptive collection and split them appropriately."""
|
||||
docs_chunk: List[Document] = []
|
||||
processed_file_records: dict[str, str] = {}
|
||||
|
||||
):
|
||||
for adaptive_file in adaptive_collection.iterate(recursive=recursive):
|
||||
if len(processed_file_records) >= 2:
|
||||
yield docs_chunk, list(processed_file_records.items())
|
||||
docs_chunk = []
|
||||
processed_file_records = {}
|
||||
|
||||
if adaptive_file.extension.lower() not in SUPPORTED_EXTENSIONS:
|
||||
logger.debug(
|
||||
f"Skipping unsupported file extension for {adaptive_file.filename}: {adaptive_file.extension}"
|
||||
)
|
||||
continue
|
||||
|
||||
logger.info(f"Processing document: {adaptive_file.filename}")
|
||||
self.ADAPTIVE_FILES_QUEUE.put(adaptive_file)
|
||||
|
||||
self.collection_finished.set()
|
||||
|
||||
# Phase 13 API: reads adaptive files and writes processed docs into PROCESSED_DOCUMENTS_QUEUE
|
||||
def process_adaptive_files_queue(self):
|
||||
while True:
|
||||
try:
|
||||
split_docs, file_hash = self._load_one_adaptive_file(adaptive_file)
|
||||
if split_docs:
|
||||
docs_chunk.extend(split_docs)
|
||||
if file_hash:
|
||||
processed_file_records[adaptive_file.filename] = file_hash
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing {adaptive_file.filename}: {str(e)}")
|
||||
adaptive_file = self.ADAPTIVE_FILES_QUEUE.get(timeout=0.2)
|
||||
except queue.Empty:
|
||||
if self.collection_finished.is_set():
|
||||
return
|
||||
continue
|
||||
|
||||
try:
|
||||
split_docs, processed_record = self._load_one_adaptive_file(
|
||||
adaptive_file
|
||||
)
|
||||
if split_docs:
|
||||
self.PROCESSED_DOCUMENTS_QUEUE.put((split_docs, processed_record))
|
||||
except Exception as error:
|
||||
logger.error(f"Error processing {adaptive_file.filename}: {error}")
|
||||
finally:
|
||||
self.ADAPTIVE_FILES_QUEUE.task_done()
|
||||
|
||||
# Phase 13 API: uploads chunked docs and marks file processed
|
||||
def upload_processed_documents_from_queue(self):
|
||||
while True:
|
||||
try:
|
||||
payload = self.PROCESSED_DOCUMENTS_QUEUE.get(timeout=0.2)
|
||||
except queue.Empty:
|
||||
if self.processing_finished.is_set():
|
||||
return
|
||||
continue
|
||||
|
||||
try:
|
||||
documents, processed_record = payload
|
||||
self.vector_store.add_documents(documents)
|
||||
|
||||
if processed_record is not None:
|
||||
self._mark_document_processed(
|
||||
processed_record[0], processed_record[1]
|
||||
)
|
||||
except Exception as error:
|
||||
logger.error(f"Error uploading processed documents: {error}")
|
||||
raise
|
||||
finally:
|
||||
self.PROCESSED_DOCUMENTS_QUEUE.task_done()
|
||||
|
||||
def _run_threaded_pipeline(self, adaptive_collection: _AdaptiveCollection):
|
||||
"""Run Phase 13 queue/thread pipeline."""
|
||||
process_threads = [
|
||||
threading.Thread(
|
||||
target=self.process_adaptive_files_queue,
|
||||
name=f"adaptive-file-processor-{index}",
|
||||
daemon=True,
|
||||
)
|
||||
for index in range(self.file_process_threads_count)
|
||||
]
|
||||
upload_threads = [
|
||||
threading.Thread(
|
||||
target=self.upload_processed_documents_from_queue,
|
||||
name=f"document-uploader-{index}",
|
||||
daemon=True,
|
||||
)
|
||||
for index in range(self.document_upload_threads_count)
|
||||
]
|
||||
|
||||
for thread in process_threads:
|
||||
thread.start()
|
||||
for thread in upload_threads:
|
||||
thread.start()
|
||||
|
||||
# This one intentionally runs on main thread per Phase 13 requirement.
|
||||
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
|
||||
|
||||
# Wait file queue completion and processing threads end.
|
||||
self.ADAPTIVE_FILES_QUEUE.join()
|
||||
for thread in process_threads:
|
||||
thread.join()
|
||||
|
||||
# Signal upload workers no more payload is expected.
|
||||
self.processing_finished.set()
|
||||
|
||||
# Wait upload completion and upload threads end.
|
||||
self.PROCESSED_DOCUMENTS_QUEUE.join()
|
||||
for thread in upload_threads:
|
||||
thread.join()
|
||||
|
||||
def _run_sync_pipeline(self, adaptive_collection: _AdaptiveCollection):
|
||||
"""Sequential pipeline for sync mode."""
|
||||
logger.info("Running enrichment in sync mode")
|
||||
self.insert_adaptive_files_queue(adaptive_collection, recursive=True)
|
||||
self.process_adaptive_files_queue()
|
||||
self.processing_finished.set()
|
||||
self.upload_processed_documents_from_queue()
|
||||
|
||||
def enrich_and_store(self, adaptive_collection: _AdaptiveCollection):
|
||||
"""Load, enrich, and store documents in the vector store."""
|
||||
logger.info("Starting enrichment process...")
|
||||
|
||||
# Load and split documents
|
||||
for documents, processed_file_records in self.load_and_split_documents(
|
||||
adaptive_collection
|
||||
):
|
||||
if not documents:
|
||||
logger.info("No new documents to process.")
|
||||
return
|
||||
if ENRICHMENT_PROCESSING_MODE == "sync":
|
||||
logger.info("Document enrichment process starting in SYNC mode")
|
||||
self._run_sync_pipeline(adaptive_collection)
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"Loaded and split {len(documents)} document chunks, adding to vector store..."
|
||||
)
|
||||
logger.debug(
|
||||
f"Documents len: {len(documents)}, processed_file_records len: {len(processed_file_records)}"
|
||||
)
|
||||
|
||||
# Add documents to vector store
|
||||
try:
|
||||
self.vector_store.add_documents(documents)
|
||||
|
||||
# Only mark documents as processed after successful insertion to vector store
|
||||
for file_identifier, file_hash in processed_file_records:
|
||||
self._mark_document_processed(file_identifier, file_hash)
|
||||
|
||||
logger.info(
|
||||
f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_records)} files as processed."
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error adding documents to vector store: {str(e)}")
|
||||
raise
|
||||
logger.info("Document enrichment process starting in ASYNC/THREAD mode")
|
||||
self._run_threaded_pipeline(adaptive_collection)
|
||||
|
||||
|
||||
def get_enrichment_adaptive_collection() -> _AdaptiveCollection:
|
||||
def get_enrichment_adaptive_collection(
|
||||
data_dir: str = str(DATA_DIR),
|
||||
) -> _AdaptiveCollection:
|
||||
"""Create adaptive collection based on environment source configuration."""
|
||||
source = ENRICHMENT_SOURCE
|
||||
if source == "local":
|
||||
local_path = ENRICHMENT_LOCAL_PATH
|
||||
if local_path is None:
|
||||
raise RuntimeError(
|
||||
"Enrichment strategy is local, but no ENRICHMENT_LOCAL_PATH is defined!"
|
||||
)
|
||||
|
||||
local_path = ENRICHMENT_LOCAL_PATH or data_dir
|
||||
logger.info(f"Using local adaptive collection from path: {local_path}")
|
||||
return LocalFilesystemAdaptiveCollection(local_path)
|
||||
|
||||
@@ -346,11 +464,11 @@ def get_enrichment_adaptive_collection() -> _AdaptiveCollection:
|
||||
)
|
||||
|
||||
|
||||
def run_enrichment_process(vector_store):
|
||||
def run_enrichment_process(vector_store, data_dir: str = str(DATA_DIR)):
|
||||
"""Run the full enrichment process."""
|
||||
logger.info("Starting document enrichment process")
|
||||
|
||||
adaptive_collection = get_enrichment_adaptive_collection()
|
||||
adaptive_collection = get_enrichment_adaptive_collection(data_dir=data_dir)
|
||||
|
||||
# Initialize the document enricher
|
||||
enricher = DocumentEnricher(vector_store)
|
||||
@@ -362,11 +480,7 @@ def run_enrichment_process(vector_store):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Example usage
|
||||
from vector_storage import initialize_vector_store
|
||||
|
||||
# Initialize vector store
|
||||
vector_store = initialize_vector_store()
|
||||
|
||||
# Run enrichment process
|
||||
run_enrichment_process(vector_store)
|
||||
|
||||
Reference in New Issue
Block a user