Vector storage Qdrant initialization and configuration
This commit is contained in:
129
services/rag/llamaindex/vector_storage.py
Normal file
129
services/rag/llamaindex/vector_storage.py
Normal file
@@ -0,0 +1,129 @@
|
||||
"""
|
||||
Vector storage configuration for the RAG solution using LlamaIndex and Qdrant.
|
||||
|
||||
This module provides initialization and configuration for:
|
||||
- Qdrant vector storage connection
|
||||
- Ollama embedding model
|
||||
- Automatic collection creation
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
from llama_index.core import VectorStoreIndex
|
||||
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||
from llama_index.llms.ollama import Ollama
|
||||
from qdrant_client import QdrantClient
|
||||
from loguru import logger
|
||||
|
||||
|
||||
def initialize_vector_storage(
|
||||
collection_name: str = "documents_llamaindex",
|
||||
host: str = "localhost",
|
||||
port: int = 6333,
|
||||
grpc_port: int = 6334,
|
||||
ollama_base_url: str = "http://localhost:11434",
|
||||
ollama_embed_model: Optional[str] = None
|
||||
) -> tuple[QdrantVectorStore, VectorStoreIndex]:
|
||||
"""
|
||||
Initialize Qdrant vector storage with Ollama embeddings.
|
||||
|
||||
Args:
|
||||
collection_name: Name of the Qdrant collection
|
||||
host: Qdrant host address
|
||||
port: Qdrant REST API port
|
||||
grpc_port: Qdrant gRPC API port
|
||||
ollama_base_url: Base URL for Ollama API
|
||||
ollama_embed_model: Name of the Ollama embedding model
|
||||
|
||||
Returns:
|
||||
Tuple of (QdrantVectorStore, VectorStoreIndex)
|
||||
"""
|
||||
logger.info(f"Initializing vector storage with collection: {collection_name}")
|
||||
|
||||
# Get embedding model from environment if not provided
|
||||
if ollama_embed_model is None:
|
||||
ollama_embed_model = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text")
|
||||
|
||||
logger.info(f"Using Ollama embedding model: {ollama_embed_model}")
|
||||
|
||||
try:
|
||||
# Initialize Qdrant client
|
||||
client = QdrantClient(host=host, port=port)
|
||||
|
||||
# Check if collection exists, create if it doesn't
|
||||
collections = client.get_collections().collections
|
||||
collection_names = [coll.name for coll in collections]
|
||||
|
||||
if collection_name not in collection_names:
|
||||
logger.info(f"Collection '{collection_name}' does not exist, creating...")
|
||||
client.create_collection(
|
||||
collection_name=collection_name,
|
||||
vectors_config={
|
||||
"size": 4096, # Default size for most embedding models
|
||||
"distance": "Cosine" # Cosine distance is commonly used
|
||||
}
|
||||
)
|
||||
logger.info(f"Collection '{collection_name}' created successfully")
|
||||
else:
|
||||
logger.info(f"Collection '{collection_name}' already exists")
|
||||
|
||||
# Initialize the Qdrant vector store
|
||||
vector_store = QdrantVectorStore(
|
||||
client=client,
|
||||
collection_name=collection_name
|
||||
)
|
||||
|
||||
# Initialize Ollama embedding
|
||||
embed_model = OllamaEmbedding(
|
||||
model_name=ollama_embed_model,
|
||||
base_url=ollama_base_url
|
||||
)
|
||||
|
||||
# Create index from vector store with the embedding model
|
||||
index = VectorStoreIndex.from_vector_store(
|
||||
vector_store=vector_store,
|
||||
embed_model=embed_model
|
||||
)
|
||||
|
||||
logger.info("Vector storage initialized successfully")
|
||||
return vector_store, index
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize vector storage: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
# Optional: Alternative embedding configuration using OpenAI via OpenRouter
|
||||
# Uncomment and configure as needed for future use
|
||||
# from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
#
|
||||
# def initialize_openai_embeddings():
|
||||
# # Use OpenRouter API key from environment
|
||||
# os.environ["OPENAI_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
|
||||
#
|
||||
# embed_model = OpenAIEmbedding(
|
||||
# model="openai/text-embedding-3-small", # Or another suitable model
|
||||
# api_base="https://openrouter.ai/api/v1" # OpenRouter endpoint
|
||||
# )
|
||||
# return embed_model
|
||||
|
||||
|
||||
def get_vector_store_and_index() -> tuple[QdrantVectorStore, VectorStoreIndex]:
|
||||
"""
|
||||
Convenience function to get the initialized vector store and index.
|
||||
|
||||
Returns:
|
||||
Tuple of (QdrantVectorStore, VectorStoreIndex)
|
||||
"""
|
||||
return initialize_vector_storage()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Example usage
|
||||
logger.info("Testing vector storage initialization...")
|
||||
try:
|
||||
vector_store, index = get_vector_store_and_index()
|
||||
logger.info("Vector storage test successful!")
|
||||
except Exception as e:
|
||||
logger.error(f"Vector storage test failed: {e}")
|
||||
Reference in New Issue
Block a user