Vector storage Qdrant initialization and configuration
This commit is contained in:
@@ -84,10 +84,11 @@ This is a Retrieval Augmented Generation (RAG) solution built using LlamaIndex a
|
||||
- [x] Required loader libraries installation
|
||||
|
||||
### Phase 3: Vector Storage Setup
|
||||
- [ ] Qdrant library installation
|
||||
- [ ] Vector storage initialization module
|
||||
- [ ] Embedding model configuration with Ollama
|
||||
- [ ] Collection creation strategy
|
||||
- [x] Qdrant library installation
|
||||
- [x] Vector storage initialization module
|
||||
- [x] Collection creation strategy for "documents_llamaindex"
|
||||
- [x] Ollama embedding model configuration
|
||||
- [x] Optional OpenAI embedding via OpenRouter (commented)
|
||||
|
||||
### Phase 4: Document Enrichment
|
||||
- [ ] Document loading module with appropriate loaders
|
||||
@@ -109,7 +110,7 @@ This is a Retrieval Augmented Generation (RAG) solution built using LlamaIndex a
|
||||
llamaindex/
|
||||
├── venv/ # Python virtual environment
|
||||
├── cli.py # CLI entry point
|
||||
├── vector_storage.py # Vector storage configuration (to be created)
|
||||
├── vector_storage.py # Vector storage configuration
|
||||
├── enrichment.py # Document loading and processing (to be created)
|
||||
├── retrieval.py # Search and retrieval functionality (to be created)
|
||||
├── agent.py # Chat agent implementation (to be created)
|
||||
|
||||
Reference in New Issue
Block a user