openai compatible integration done

This commit is contained in:
2026-02-04 22:30:57 +03:00
parent ae8c00316e
commit bf3a3735cb
5 changed files with 116 additions and 52 deletions

View File

@@ -8,6 +8,7 @@ from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
from langchain_core.agents import AgentFinish
from langgraph.prebuilt import create_react_agent
from langchain_ollama import ChatOllama
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from loguru import logger
@@ -69,36 +70,64 @@ def create_chat_agent(
) -> Any:
"""
Create a chat agent with document retrieval capabilities.
Args:
collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use (defaults to OLLAMA_CHAT_MODEL env var)
llm_model: Name of the model to use (defaults to environment variable based on strategy)
Returns:
Configured chat agent
"""
logger.info("Creating chat agent with document retrieval capabilities")
# Get the model name from environment if not provided
if llm_model is None:
llm_model = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
# Initialize the Ollama chat model
llm = ChatOllama(
model=llm_model,
base_url="http://localhost:11434", # Default Ollama URL
temperature=0.1,
)
# Determine which model strategy to use
chat_model_strategy = os.getenv("CHAT_MODEL_STRATEGY", "ollama").lower()
if chat_model_strategy == "openai":
# Use OpenAI-compatible API
openai_chat_url = os.getenv("OPENAI_CHAT_URL")
openai_chat_key = os.getenv("OPENAI_CHAT_KEY")
if not openai_chat_url or not openai_chat_key:
raise ValueError("OPENAI_CHAT_URL and OPENAI_CHAT_KEY must be set when using OpenAI strategy")
# Get the model name from environment if not provided
if llm_model is None:
llm_model = os.getenv("OPENAI_CHAT_MODEL", "gpt-3.5-turbo") # Default to a common model
# Initialize the OpenAI-compatible chat model
llm = ChatOpenAI(
model=llm_model,
openai_api_base=openai_chat_url,
openai_api_key=openai_chat_key,
temperature=0.1,
)
logger.info(f"Using OpenAI-compatible model: {llm_model} via {openai_chat_url}")
else: # Default to ollama
# Use Ollama
# Get the model name from environment if not provided
if llm_model is None:
llm_model = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
# Initialize the Ollama chat model
llm = ChatOllama(
model=llm_model,
base_url="http://localhost:11434", # Default Ollama URL
temperature=0.1,
)
logger.info(f"Using Ollama model: {llm_model}")
# Create the document retrieval tool
retrieval_tool = DocumentRetrievalTool()
# Create the agent with the LLM and tools
tools = [retrieval_tool]
agent = create_react_agent(llm, tools)
logger.info("Chat agent created successfully")
return agent
@@ -110,47 +139,47 @@ def chat_with_agent(
) -> Dict[str, Any]:
"""
Chat with the agent and get a response based on the query and document retrieval.
Args:
query: The user's query
collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use
llm_model: Name of the model to use (defaults to environment variable based on strategy)
history: Conversation history (list of messages)
Returns:
Dictionary containing the agent's response and metadata
"""
logger.info(f"Starting chat with query: {query}")
# Create the agent
agent = create_chat_agent(collection_name, llm_model)
# Prepare the input for the agent
if history is None:
history = []
# Add the user's query to the history
history.append(HumanMessage(content=query))
# Prepare the input for the agent executor
agent_input = {
"messages": history
}
try:
# Invoke the agent
result = agent.invoke(agent_input)
# Extract the agent's response
messages = result.get("messages", [])
ai_message = None
# Find the AI message in the results
for msg in reversed(messages):
if isinstance(msg, AIMessage):
ai_message = msg
break
if ai_message is None:
# If no AI message was found, return the last message content
if messages:
@@ -160,7 +189,7 @@ def chat_with_agent(
response_content = "I couldn't generate a response to your query."
else:
response_content = ai_message.content
# Create the response dictionary
response = {
"response": response_content,
@@ -168,10 +197,10 @@ def chat_with_agent(
"history": messages, # Return updated history
"success": True
}
logger.info("Chat completed successfully")
return response
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return {
@@ -188,29 +217,39 @@ def run_chat_loop(
):
"""
Run an interactive chat loop with the agent.
Args:
collection_name: Name of the Qdrant collection to use
llm_model: Name of the Ollama model to use
llm_model: Name of the model to use (defaults to environment variable based on strategy)
"""
logger.info("Starting interactive chat loop")
print("Chat Agent initialized. Type 'quit' or 'exit' to end the conversation.\n")
# Determine which model strategy is being used and inform the user
chat_model_strategy = os.getenv("CHAT_MODEL_STRATEGY", "ollama").lower()
if chat_model_strategy == "openai":
model_info = os.getenv("OPENAI_CHAT_MODEL", "gpt-3.5-turbo")
print(f"Chat Agent initialized with OpenAI-compatible model: {model_info}")
else:
model_info = os.getenv("OLLAMA_CHAT_MODEL", "llama3.1")
print(f"Chat Agent initialized with Ollama model: {model_info}")
print("Type 'quit' or 'exit' to end the conversation.\n")
history = []
while True:
try:
# Get user input
user_input = input("You: ").strip()
# Check for exit commands
if user_input.lower() in ['quit', 'exit', 'q']:
print("Ending chat session. Goodbye!")
break
if not user_input:
continue
# Get response from the agent
response_data = chat_with_agent(
query=user_input,
@@ -218,13 +257,13 @@ def run_chat_loop(
llm_model=llm_model,
history=history
)
# Update history with the new messages
history = response_data.get("history", [])
# Print the agent's response
print(f"Agent: {response_data.get('response', 'No response generated')}\n")
except KeyboardInterrupt:
print("\nEnding chat session. Goodbye!")
break