langchain loading documents into vector storage
This commit is contained in:
@@ -2,11 +2,12 @@
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
from langchain_community.vectorstores import Qdrant
|
||||
from langchain_ollama import OllamaEmbeddings
|
||||
from langchain_core.documents import Document
|
||||
from qdrant_client import QdrantClient
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from langchain_community.vectorstores import Qdrant
|
||||
from langchain_core.documents import Document
|
||||
from langchain_ollama import OllamaEmbeddings
|
||||
from qdrant_client import QdrantClient
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
@@ -21,16 +22,15 @@ OLLAMA_EMBEDDING_MODEL = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text")
|
||||
|
||||
|
||||
def initialize_vector_store(
|
||||
collection_name: str = "documents",
|
||||
recreate_collection: bool = False
|
||||
collection_name: str = "documents_langchain", recreate_collection: bool = False
|
||||
) -> Qdrant:
|
||||
"""
|
||||
Initialize and return a Qdrant vector store with Ollama embeddings.
|
||||
|
||||
|
||||
Args:
|
||||
collection_name: Name of the Qdrant collection to use
|
||||
recreate_collection: Whether to recreate the collection if it exists
|
||||
|
||||
|
||||
Returns:
|
||||
Initialized Qdrant vector store
|
||||
"""
|
||||
@@ -39,44 +39,44 @@ def initialize_vector_store(
|
||||
host=QDRANT_HOST,
|
||||
port=QDRANT_REST_PORT,
|
||||
)
|
||||
|
||||
|
||||
# Initialize Ollama embeddings
|
||||
embeddings = OllamaEmbeddings(
|
||||
model=OLLAMA_EMBEDDING_MODEL,
|
||||
base_url="http://localhost:11434" # Default Ollama URL
|
||||
base_url="http://localhost:11434", # Default Ollama URL
|
||||
)
|
||||
|
||||
|
||||
# Create or get the vector store
|
||||
vector_store = Qdrant(
|
||||
client=client,
|
||||
collection_name=collection_name,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
|
||||
|
||||
# If recreate_collection is True, we'll delete and recreate the collection
|
||||
if recreate_collection and collection_name in [col.name for col in client.get_collections().collections]:
|
||||
if recreate_collection and collection_name in [
|
||||
col.name for col in client.get_collections().collections
|
||||
]:
|
||||
client.delete_collection(collection_name)
|
||||
|
||||
|
||||
# Recreate with proper configuration
|
||||
vector_store = Qdrant.from_documents(
|
||||
documents=[],
|
||||
embedding=embeddings,
|
||||
url=f"http://{QDRANT_HOST}:{QDRANT_REST_PORT}",
|
||||
collection_name=collection_name,
|
||||
force_recreate=True
|
||||
force_recreate=True,
|
||||
)
|
||||
|
||||
|
||||
return vector_store
|
||||
|
||||
|
||||
def add_documents_to_vector_store(
|
||||
vector_store: Qdrant,
|
||||
documents: list[Document],
|
||||
batch_size: int = 10
|
||||
vector_store: Qdrant, documents: list[Document], batch_size: int = 10
|
||||
) -> None:
|
||||
"""
|
||||
Add documents to the vector store.
|
||||
|
||||
|
||||
Args:
|
||||
vector_store: Initialized Qdrant vector store
|
||||
documents: List of documents to add
|
||||
@@ -84,23 +84,19 @@ def add_documents_to_vector_store(
|
||||
"""
|
||||
# Add documents to the vector store in batches
|
||||
for i in range(0, len(documents), batch_size):
|
||||
batch = documents[i:i + batch_size]
|
||||
batch = documents[i : i + batch_size]
|
||||
vector_store.add_documents(batch)
|
||||
|
||||
|
||||
def search_vector_store(
|
||||
vector_store: Qdrant,
|
||||
query: str,
|
||||
top_k: int = 5
|
||||
) -> list:
|
||||
def search_vector_store(vector_store: Qdrant, query: str, top_k: int = 5) -> list:
|
||||
"""
|
||||
Search the vector store for similar documents.
|
||||
|
||||
|
||||
Args:
|
||||
vector_store: Initialized Qdrant vector store
|
||||
query: Query string to search for
|
||||
top_k: Number of top results to return
|
||||
|
||||
|
||||
Returns:
|
||||
List of similar documents
|
||||
"""
|
||||
@@ -127,27 +123,29 @@ def initialize_vector_store_with_openrouter(
|
||||
host=QDRANT_HOST,
|
||||
port=QDRANT_REST_PORT,
|
||||
)
|
||||
|
||||
|
||||
# Initialize OpenAI embeddings via OpenRouter
|
||||
embeddings = OpenAIEmbeddings(
|
||||
model=OPENROUTER_EMBEDDING_MODEL,
|
||||
openai_api_key=OPENROUTER_API_KEY,
|
||||
openai_api_base="https://openrouter.ai/api/v1"
|
||||
)
|
||||
|
||||
|
||||
# Create or get the vector store
|
||||
vector_store = Qdrant(
|
||||
client=client,
|
||||
collection_name=collection_name,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
|
||||
|
||||
return vector_store
|
||||
"""
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Example usage
|
||||
print(f"Initializing vector store with Ollama embedding model: {OLLAMA_EMBEDDING_MODEL}")
|
||||
print(
|
||||
f"Initializing vector store with Ollama embedding model: {OLLAMA_EMBEDDING_MODEL}"
|
||||
)
|
||||
vector_store = initialize_vector_store()
|
||||
print("Vector store initialized successfully!")
|
||||
print("Vector store initialized successfully!")
|
||||
|
||||
Reference in New Issue
Block a user