quick fix to use openai instead of ollama, in vetor_storage.py

This commit is contained in:
2026-02-05 00:04:10 +03:00
parent f87f3c0cdd
commit 833aad317a
2 changed files with 40 additions and 13 deletions

View File

@@ -105,12 +105,19 @@ The project is organized into 8 development phases as outlined in `PLANNING.md`:
The project uses environment variables for configuration:
```env
# Embedding configuration
OLLAMA_EMBEDDING_MODEL=MODEL # Name of the Ollama model for embeddings
OPENAI_EMBEDDING_MODEL=MODEL # Name of the OpenAI model for embeddings (default: text-embedding-ada-002)
OPENAI_EMBEDDING_BASE_URL=URL # OpenAI-compatible API URL for embeddings
OPENAI_EMBEDDING_API_KEY=KEY # API key for OpenAI-compatible embedding service
EMBEDDING_STRATEGY=ollama # Strategy to use for embeddings: "ollama" (default) or "openai"
# Chat model configuration
OLLAMA_CHAT_MODEL=MODEL # Name of the Ollama model for chat
OPENAI_CHAT_URL=URL # OpenAI-compatible API URL
OPENAI_CHAT_KEY=KEY # Authorization token for OpenAI-compatible API
OPENAI_CHAT_MODEL=MODEL # Name of the OpenAI-compatible model to use
CHAT_MODEL_STRATEGY=ollama # Strategy to use: "ollama" (default) or "openai"
OPENAI_CHAT_URL=URL # OpenAI-compatible API URL for chat
OPENAI_CHAT_KEY=KEY # Authorization token for OpenAI-compatible API for chat
OPENAI_CHAT_MODEL=MODEL # Name of the OpenAI-compatible model to use for chat
CHAT_MODEL_STRATEGY=ollama # Strategy to use for chat: "ollama" (default) or "openai"
```
## Building and Running
@@ -235,3 +242,5 @@ The project is in early development phase. The virtual environment is set up and
- If encountering "No module named 'unstructured_inference'" error, install unstructured-inference
- If seeing OCR-related errors, ensure tesseract is installed at the system level and unstructured-pytesseract is available
- For language detection issues, verify that appropriate spaCy models are downloaded
- If getting Ollama connection errors when using OpenAI strategy, ensure EMBEDDING_STRATEGY is set correctly in .env
- When deploying without Ollama, set both CHAT_MODEL_STRATEGY and EMBEDDING_STRATEGY to "openai" in your .env file

View File

@@ -1,4 +1,4 @@
"""Vector storage module using Qdrant and Ollama embeddings for the RAG solution."""
"""Vector storage module using Qdrant and configurable embeddings for the RAG solution."""
import os
from typing import Optional
@@ -7,6 +7,7 @@ from dotenv import load_dotenv
from langchain_qdrant import QdrantVectorStore
from langchain_core.documents import Document
from langchain_ollama import OllamaEmbeddings
from langchain_openai import OpenAIEmbeddings
from qdrant_client import QdrantClient
# Load environment variables
@@ -17,15 +18,19 @@ QDRANT_HOST = os.getenv("QDRANT_HOST", "localhost")
QDRANT_REST_PORT = int(os.getenv("QDRANT_REST_PORT", 6333))
QDRANT_GRPC_PORT = int(os.getenv("QDRANT_GRPC_PORT", 6334))
# Ollama embedding model configuration
# Embedding model configuration
EMBEDDING_STRATEGY = os.getenv("EMBEDDING_STRATEGY", "ollama").lower()
OLLAMA_EMBEDDING_MODEL = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text")
OPENAI_EMBEDDING_MODEL = os.getenv("OPENAI_EMBEDDING_MODEL", "text-embedding-ada-002")
OPENAI_EMBEDDING_BASE_URL = os.getenv("OPENAI_EMBEDDING_BASE_URL")
OPENAI_EMBEDDING_API_KEY = os.getenv("OPENAI_EMBEDDING_API_KEY")
def initialize_vector_store(
collection_name: str = "documents_langchain", recreate_collection: bool = False
) -> QdrantVectorStore:
"""
Initialize and return a Qdrant vector store with Ollama embeddings.
Initialize and return a Qdrant vector store with configurable embeddings.
Args:
collection_name: Name of the Qdrant collection to use
@@ -34,11 +39,24 @@ def initialize_vector_store(
Returns:
Initialized Qdrant vector store
"""
# Initialize Ollama embeddings
embeddings = OllamaEmbeddings(
model=OLLAMA_EMBEDDING_MODEL,
base_url="http://localhost:11434", # Default Ollama URL
)
# Determine which embedding strategy to use
if EMBEDDING_STRATEGY == "openai":
# Validate required OpenAI embedding variables
if not OPENAI_EMBEDDING_API_KEY or not OPENAI_EMBEDDING_BASE_URL:
raise ValueError("OPENAI_EMBEDDING_API_KEY and OPENAI_EMBEDDING_BASE_URL must be set when using OpenAI embedding strategy")
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(
model=OPENAI_EMBEDDING_MODEL,
openai_api_base=OPENAI_EMBEDDING_BASE_URL,
openai_api_key=OPENAI_EMBEDDING_API_KEY,
)
else: # Default to ollama
# Initialize Ollama embeddings
embeddings = OllamaEmbeddings(
model=OLLAMA_EMBEDDING_MODEL,
base_url="http://localhost:11434", # Default Ollama URL
)
# Check if collection exists and create if needed
client = QdrantClient(