Enrichment now processed via chunks. 2 documents -> into the vector storage. Also geussing source from the file extension
This commit is contained in:
BIN
services/rag/langchain/.DS_Store
vendored
BIN
services/rag/langchain/.DS_Store
vendored
Binary file not shown.
@@ -37,15 +37,16 @@ def ping():
|
||||
name="enrich",
|
||||
help="Load documents from data directory and store in vector database",
|
||||
)
|
||||
@click.option("--data-dir", default="../../../data", help="Path to the data directory")
|
||||
@click.option(
|
||||
"--collection-name",
|
||||
default="documents_langchain",
|
||||
help="Name of the vector store collection",
|
||||
)
|
||||
def enrich(data_dir, collection_name):
|
||||
def enrich(collection_name):
|
||||
"""Load documents from data directory and store in vector database"""
|
||||
logger.info(f"Starting enrichment process for directory: {data_dir}")
|
||||
logger.info(
|
||||
f"Starting enrichment process. Enrichment source: {os.getenv('ENRICHMENT_SOURCE')}"
|
||||
)
|
||||
|
||||
try:
|
||||
# Import here to avoid circular dependencies
|
||||
@@ -56,7 +57,7 @@ def enrich(data_dir, collection_name):
|
||||
vector_store = initialize_vector_store(collection_name=collection_name)
|
||||
|
||||
# Run enrichment process
|
||||
run_enrichment_process(vector_store, data_dir=data_dir)
|
||||
run_enrichment_process(vector_store)
|
||||
|
||||
logger.info("Enrichment process completed successfully!")
|
||||
click.echo("Documents have been successfully loaded into the vector store.")
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
"""Document enrichment module for loading documents into vector storage."""
|
||||
|
||||
import os
|
||||
import hashlib
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
from typing import Iterator, List, Tuple
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from langchain_community.document_loaders import PyPDFLoader
|
||||
from langchain_core.documents import Document
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain_community.document_loaders import PyPDFLoader
|
||||
|
||||
# Dynamically import other loaders to handle optional dependencies
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
|
||||
@@ -33,10 +35,10 @@ try:
|
||||
from langchain_community.document_loaders import UnstructuredODTLoader
|
||||
except ImportError:
|
||||
UnstructuredODTLoader = None
|
||||
from sqlalchemy import create_engine, Column, Integer, String
|
||||
from loguru import logger
|
||||
from sqlalchemy import Column, Integer, String, create_engine
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from loguru import logger
|
||||
|
||||
from helpers import (
|
||||
LocalFilesystemAdaptiveCollection,
|
||||
@@ -76,11 +78,24 @@ SUPPORTED_EXTENSIONS = {
|
||||
".odt",
|
||||
}
|
||||
|
||||
|
||||
def try_guess_source(extension: str) -> str:
|
||||
if extension in [".xlsx", "xls"]:
|
||||
return "таблица"
|
||||
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
return "изображение"
|
||||
elif extension in [".pptx"]:
|
||||
return "презентация"
|
||||
else:
|
||||
return "документ"
|
||||
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
|
||||
class ProcessedDocument(Base):
|
||||
"""Database model for tracking processed documents."""
|
||||
|
||||
__tablename__ = "processed_documents"
|
||||
|
||||
id = Column(Integer, primary_key=True)
|
||||
@@ -120,17 +135,14 @@ class DocumentEnricher:
|
||||
|
||||
def _is_document_hash_processed(self, file_hash: str) -> bool:
|
||||
"""Check if a document hash has already been processed."""
|
||||
existing = self.session.query(ProcessedDocument).filter_by(
|
||||
file_hash=file_hash
|
||||
).first()
|
||||
existing = (
|
||||
self.session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
|
||||
)
|
||||
return existing is not None
|
||||
|
||||
def _mark_document_processed(self, file_identifier: str, file_hash: str):
|
||||
"""Mark a document as processed in the database."""
|
||||
doc_record = ProcessedDocument(
|
||||
file_path=file_identifier,
|
||||
file_hash=file_hash
|
||||
)
|
||||
doc_record = ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
|
||||
self.session.add(doc_record)
|
||||
self.session.commit()
|
||||
|
||||
@@ -142,30 +154,50 @@ class DocumentEnricher:
|
||||
return PyPDFLoader(file_path)
|
||||
elif ext in [".docx", ".doc"]:
|
||||
if UnstructuredWordDocumentLoader is None:
|
||||
logger.warning(f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping.")
|
||||
logger.warning(
|
||||
f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
return UnstructuredWordDocumentLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
return UnstructuredWordDocumentLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext == ".pptx":
|
||||
if UnstructuredPowerPointLoader is None:
|
||||
logger.warning(f"UnstructuredPowerPointLoader not available for {file_path}. Skipping.")
|
||||
logger.warning(
|
||||
f"UnstructuredPowerPointLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
return UnstructuredPowerPointLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
return UnstructuredPowerPointLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext in [".xlsx", ".xls"]:
|
||||
if UnstructuredExcelLoader is None:
|
||||
logger.warning(f"UnstructuredExcelLoader not available for {file_path}. Skipping.")
|
||||
logger.warning(
|
||||
f"UnstructuredExcelLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
return UnstructuredExcelLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
return UnstructuredExcelLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
if UnstructuredImageLoader is None:
|
||||
logger.warning(f"UnstructuredImageLoader not available for {file_path}. Skipping.")
|
||||
logger.warning(
|
||||
f"UnstructuredImageLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
# Use OCR strategy for images to extract text
|
||||
return UnstructuredImageLoader(file_path, **{"strategy": "ocr_only", "languages": ["rus"]})
|
||||
return UnstructuredImageLoader(
|
||||
file_path, **{"strategy": "ocr_only", "languages": ["rus"]}
|
||||
)
|
||||
elif ext == ".odt":
|
||||
if UnstructuredODTLoader is None:
|
||||
logger.warning(f"UnstructuredODTLoader not available for {file_path}. Skipping.")
|
||||
logger.warning(
|
||||
f"UnstructuredODTLoader not available for {file_path}. Skipping."
|
||||
)
|
||||
return None
|
||||
return UnstructuredODTLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
return UnstructuredODTLoader(
|
||||
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
||||
)
|
||||
else:
|
||||
return None
|
||||
|
||||
@@ -175,7 +207,7 @@ class DocumentEnricher:
|
||||
"""Load and split one adaptive file by using its local working callback."""
|
||||
loaded_docs: List[Document] = []
|
||||
file_hash: str | None = None
|
||||
source_identifier = adaptive_file.local_path
|
||||
source_identifier = try_guess_source(adaptive_file.extension)
|
||||
extension = adaptive_file.extension.lower()
|
||||
|
||||
def process_local_file(local_file_path: str):
|
||||
@@ -183,7 +215,9 @@ class DocumentEnricher:
|
||||
|
||||
file_hash = self._get_file_hash(local_file_path)
|
||||
if self._is_document_hash_processed(file_hash):
|
||||
logger.info(f"Skipping already processed document hash for: {source_identifier}")
|
||||
logger.info(
|
||||
f"Skipping already processed document hash for: {source_identifier}"
|
||||
)
|
||||
return
|
||||
|
||||
loader = self._get_loader_for_extension(local_file_path)
|
||||
@@ -216,45 +250,52 @@ class DocumentEnricher:
|
||||
|
||||
def load_and_split_documents(
|
||||
self, adaptive_collection: _AdaptiveCollection, recursive: bool = True
|
||||
) -> Tuple[List[Document], List[Tuple[str, str]]]:
|
||||
) -> Iterator[Tuple[List[Document], List[Tuple[str, str]]]]:
|
||||
"""Load documents from adaptive collection and split them appropriately."""
|
||||
all_docs: List[Document] = []
|
||||
docs_chunk: List[Document] = []
|
||||
processed_file_records: dict[str, str] = {}
|
||||
|
||||
for adaptive_file in adaptive_collection.iterate(recursive=recursive):
|
||||
if len(processed_file_records) >= 2:
|
||||
yield docs_chunk, list(processed_file_records.items())
|
||||
docs_chunk = []
|
||||
processed_file_records = {}
|
||||
|
||||
if adaptive_file.extension.lower() not in SUPPORTED_EXTENSIONS:
|
||||
logger.debug(
|
||||
f"Skipping unsupported file extension for {adaptive_file.filename}: {adaptive_file.extension}"
|
||||
)
|
||||
continue
|
||||
|
||||
logger.info(f"Processing document: {adaptive_file.local_path}")
|
||||
logger.info(f"Processing document: {adaptive_file.filename}")
|
||||
try:
|
||||
split_docs, file_hash = self._load_one_adaptive_file(adaptive_file)
|
||||
if split_docs:
|
||||
all_docs.extend(split_docs)
|
||||
docs_chunk.extend(split_docs)
|
||||
if file_hash:
|
||||
processed_file_records[adaptive_file.local_path] = file_hash
|
||||
processed_file_records[adaptive_file.filename] = file_hash
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing {adaptive_file.local_path}: {str(e)}")
|
||||
logger.error(f"Error processing {adaptive_file.filename}: {str(e)}")
|
||||
continue
|
||||
|
||||
return all_docs, list(processed_file_records.items())
|
||||
|
||||
def enrich_and_store(self, adaptive_collection: _AdaptiveCollection):
|
||||
"""Load, enrich, and store documents in the vector store."""
|
||||
logger.info("Starting enrichment process...")
|
||||
|
||||
# Load and split documents
|
||||
documents, processed_file_records = self.load_and_split_documents(
|
||||
for documents, processed_file_records in self.load_and_split_documents(
|
||||
adaptive_collection
|
||||
)
|
||||
|
||||
):
|
||||
if not documents:
|
||||
logger.info("No new documents to process.")
|
||||
return
|
||||
|
||||
logger.info(f"Loaded and split {len(documents)} document chunks, adding to vector store...")
|
||||
logger.info(
|
||||
f"Loaded and split {len(documents)} document chunks, adding to vector store..."
|
||||
)
|
||||
logger.debug(
|
||||
f"Documents len: {len(documents)}, processed_file_records len: {len(processed_file_records)}"
|
||||
)
|
||||
|
||||
# Add documents to vector store
|
||||
try:
|
||||
@@ -272,13 +313,16 @@ class DocumentEnricher:
|
||||
raise
|
||||
|
||||
|
||||
def get_enrichment_adaptive_collection(
|
||||
data_dir: str = str(DATA_DIR),
|
||||
) -> _AdaptiveCollection:
|
||||
def get_enrichment_adaptive_collection() -> _AdaptiveCollection:
|
||||
"""Create adaptive collection based on environment source configuration."""
|
||||
source = ENRICHMENT_SOURCE
|
||||
if source == "local":
|
||||
local_path = ENRICHMENT_LOCAL_PATH or data_dir
|
||||
local_path = ENRICHMENT_LOCAL_PATH
|
||||
if local_path is None:
|
||||
raise RuntimeError(
|
||||
"Enrichment strategy is local, but no ENRICHMENT_LOCAL_PATH is defined!"
|
||||
)
|
||||
|
||||
logger.info(f"Using local adaptive collection from path: {local_path}")
|
||||
return LocalFilesystemAdaptiveCollection(local_path)
|
||||
|
||||
@@ -302,11 +346,11 @@ def get_enrichment_adaptive_collection(
|
||||
)
|
||||
|
||||
|
||||
def run_enrichment_process(vector_store, data_dir: str = str(DATA_DIR)):
|
||||
def run_enrichment_process(vector_store):
|
||||
"""Run the full enrichment process."""
|
||||
logger.info("Starting document enrichment process")
|
||||
|
||||
adaptive_collection = get_enrichment_adaptive_collection(data_dir=data_dir)
|
||||
adaptive_collection = get_enrichment_adaptive_collection()
|
||||
|
||||
# Initialize the document enricher
|
||||
enricher = DocumentEnricher(vector_store)
|
||||
|
||||
@@ -115,13 +115,11 @@ def extract_russian_event_names(text: str) -> List[str]:
|
||||
|
||||
class _AdaptiveFile(ABC):
|
||||
extension: str # Format: .jpg
|
||||
local_path: str
|
||||
filename: str
|
||||
|
||||
def __init__(self, filename: str, extension: str, local_path: str):
|
||||
def __init__(self, filename: str, extension: str):
|
||||
self.filename = filename
|
||||
self.extension = extension
|
||||
self.local_path = local_path
|
||||
|
||||
# This method allows to work with file locally, and lambda should be provided for this.
|
||||
# Why separate method? For possible cleanup after work is done. And to download file, if needed
|
||||
@@ -139,8 +137,11 @@ class _AdaptiveCollection(ABC):
|
||||
|
||||
|
||||
class LocalFilesystemAdaptiveFile(_AdaptiveFile):
|
||||
local_path: str
|
||||
|
||||
def __init__(self, filename: str, extension: str, local_path: str):
|
||||
super().__init__(filename, extension, local_path)
|
||||
super().__init__(filename, extension)
|
||||
self.local_path = local_path
|
||||
|
||||
def work_with_file_locally(self, func: Callable[[str], None]):
|
||||
func(self.local_path)
|
||||
@@ -171,7 +172,7 @@ class YandexDiskAdaptiveFile(_AdaptiveFile):
|
||||
remote_path: str
|
||||
|
||||
def __init__(self, filename: str, extension: str, remote_path: str, token: str):
|
||||
super().__init__(filename, extension, remote_path)
|
||||
super().__init__(filename, extension)
|
||||
self.token = token
|
||||
self.remote_path = remote_path
|
||||
|
||||
|
||||
Reference in New Issue
Block a user