langchain vector storage connection and confguration

This commit is contained in:
2026-02-03 20:42:09 +03:00
parent cd7c96e022
commit 762ed89843
3 changed files with 161 additions and 7 deletions

View File

@@ -27,6 +27,7 @@ rag-solution/services/rag/langchain/
├── PLANNING.md # Development roadmap and phases
├── QWEN.md # Current file - project context
├── requirements.txt # Python dependencies
├── vector_storage.py # Vector storage module with Qdrant and Ollama embeddings
└── venv/ # Virtual environment
```
@@ -57,10 +58,10 @@ The project is organized into 6 development phases as outlined in `PLANNING.md`:
- [x] Configure environment variables
### Phase 3: Vector Storage Setup
- [ ] Install Qdrant client library
- [ ] Create `vector_storage.py` for initialization
- [ ] Configure Ollama embeddings using `OLLAMA_EMBEDDING_MODEL`
- [ ] Prepare OpenAI fallback (commented)
- [x] Install Qdrant client library
- [x] Create `vector_storage.py` for initialization
- [x] Configure Ollama embeddings using `OLLAMA_EMBEDDING_MODEL`
- [x] Prepare OpenAI fallback (commented)
### Phase 4: Document Loading Module
- [ ] Create `enrichment.py` for loading documents to vector storage