langchain vector storage connection and confguration
This commit is contained in:
@@ -27,6 +27,7 @@ rag-solution/services/rag/langchain/
|
||||
├── PLANNING.md # Development roadmap and phases
|
||||
├── QWEN.md # Current file - project context
|
||||
├── requirements.txt # Python dependencies
|
||||
├── vector_storage.py # Vector storage module with Qdrant and Ollama embeddings
|
||||
└── venv/ # Virtual environment
|
||||
```
|
||||
|
||||
@@ -57,10 +58,10 @@ The project is organized into 6 development phases as outlined in `PLANNING.md`:
|
||||
- [x] Configure environment variables
|
||||
|
||||
### Phase 3: Vector Storage Setup
|
||||
- [ ] Install Qdrant client library
|
||||
- [ ] Create `vector_storage.py` for initialization
|
||||
- [ ] Configure Ollama embeddings using `OLLAMA_EMBEDDING_MODEL`
|
||||
- [ ] Prepare OpenAI fallback (commented)
|
||||
- [x] Install Qdrant client library
|
||||
- [x] Create `vector_storage.py` for initialization
|
||||
- [x] Configure Ollama embeddings using `OLLAMA_EMBEDDING_MODEL`
|
||||
- [x] Prepare OpenAI fallback (commented)
|
||||
|
||||
### Phase 4: Document Loading Module
|
||||
- [ ] Create `enrichment.py` for loading documents to vector storage
|
||||
|
||||
Reference in New Issue
Block a user