Working enrichment
This commit is contained in:
1
services/rag/langchain/.gitignore
vendored
1
services/rag/langchain/.gitignore
vendored
@@ -214,3 +214,4 @@ __marimo__/
|
||||
|
||||
# Streamlit
|
||||
.streamlit/secrets.toml
|
||||
document_tracking.db
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import click
|
||||
from loguru import logger
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
from loguru import logger
|
||||
|
||||
|
||||
# Configure logging to output to both file and stdout as specified in requirements
|
||||
def setup_logging():
|
||||
@@ -28,17 +29,24 @@ def ping():
|
||||
click.echo("pong")
|
||||
|
||||
|
||||
@cli.command(name="enrich", help="Load documents from data directory and store in vector database")
|
||||
@click.option('--data-dir', default="../../../data", help="Path to the data directory")
|
||||
@click.option('--collection-name', default="documents", help="Name of the vector store collection")
|
||||
@cli.command(
|
||||
name="enrich",
|
||||
help="Load documents from data directory and store in vector database",
|
||||
)
|
||||
@click.option("--data-dir", default="../../../data", help="Path to the data directory")
|
||||
@click.option(
|
||||
"--collection-name",
|
||||
default="documents_langchain",
|
||||
help="Name of the vector store collection",
|
||||
)
|
||||
def enrich(data_dir, collection_name):
|
||||
"""Load documents from data directory and store in vector database"""
|
||||
logger.info(f"Starting enrichment process for directory: {data_dir}")
|
||||
|
||||
try:
|
||||
# Import here to avoid circular dependencies
|
||||
from vector_storage import initialize_vector_store
|
||||
from enrichment import run_enrichment_process
|
||||
from vector_storage import initialize_vector_store
|
||||
|
||||
# Initialize vector store
|
||||
vector_store = initialize_vector_store(collection_name=collection_name)
|
||||
|
||||
@@ -6,14 +6,32 @@ from pathlib import Path
|
||||
from typing import List, Dict, Any
|
||||
from langchain_core.documents import Document
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain_community.document_loaders import (
|
||||
PyPDFLoader,
|
||||
UnstructuredWordDocumentLoader,
|
||||
UnstructuredPowerPointLoader,
|
||||
PandasExcelLoader,
|
||||
UnstructuredImageLoader,
|
||||
UnstructuredODTLoader,
|
||||
)
|
||||
from langchain_community.document_loaders import PyPDFLoader
|
||||
# Dynamically import other loaders to handle optional dependencies
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
|
||||
except ImportError:
|
||||
UnstructuredWordDocumentLoader = None
|
||||
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredPowerPointLoader
|
||||
except ImportError:
|
||||
UnstructuredPowerPointLoader = None
|
||||
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredExcelLoader
|
||||
except ImportError:
|
||||
UnstructuredExcelLoader = None
|
||||
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredImageLoader
|
||||
except ImportError:
|
||||
UnstructuredImageLoader = None
|
||||
|
||||
try:
|
||||
from langchain_community.document_loaders import UnstructuredODTLoader
|
||||
except ImportError:
|
||||
UnstructuredODTLoader = None
|
||||
from sqlalchemy import create_engine, Column, Integer, String
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
@@ -92,15 +110,31 @@ class DocumentEnricher:
|
||||
if ext == ".pdf":
|
||||
return PyPDFLoader(file_path)
|
||||
elif ext in [".docx", ".doc"]:
|
||||
return UnstructuredWordDocumentLoader(file_path)
|
||||
if UnstructuredWordDocumentLoader is None:
|
||||
logger.warning(f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping.")
|
||||
return None
|
||||
return UnstructuredWordDocumentLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
elif ext == ".pptx":
|
||||
return UnstructuredPowerPointLoader(file_path)
|
||||
if UnstructuredPowerPointLoader is None:
|
||||
logger.warning(f"UnstructuredPowerPointLoader not available for {file_path}. Skipping.")
|
||||
return None
|
||||
return UnstructuredPowerPointLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
elif ext in [".xlsx", ".xls"]:
|
||||
return PandasExcelLoader(file_path)
|
||||
if UnstructuredExcelLoader is None:
|
||||
logger.warning(f"UnstructuredExcelLoader not available for {file_path}. Skipping.")
|
||||
return None
|
||||
return UnstructuredExcelLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
||||
return UnstructuredImageLoader(file_path)
|
||||
if UnstructuredImageLoader is None:
|
||||
logger.warning(f"UnstructuredImageLoader not available for {file_path}. Skipping.")
|
||||
return None
|
||||
# Use OCR strategy for images to extract text
|
||||
return UnstructuredImageLoader(file_path, **{"strategy": "ocr_only", "languages": ["rus"]})
|
||||
elif ext == ".odt":
|
||||
return UnstructuredODTLoader(file_path)
|
||||
if UnstructuredODTLoader is None:
|
||||
logger.warning(f"UnstructuredODTLoader not available for {file_path}. Skipping.")
|
||||
return None
|
||||
return UnstructuredODTLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
|
||||
else:
|
||||
# For text files and unsupported formats, try to load as text
|
||||
try:
|
||||
@@ -154,9 +188,6 @@ class DocumentEnricher:
|
||||
# Add to the collection
|
||||
all_docs.extend(split_docs)
|
||||
|
||||
# Mark document as processed
|
||||
self._mark_document_processed(file_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing {file_path}: {str(e)}")
|
||||
continue
|
||||
@@ -177,9 +208,22 @@ class DocumentEnricher:
|
||||
logger.info(f"Loaded and split {len(documents)} document chunks, adding to vector store...")
|
||||
|
||||
# Add documents to vector store
|
||||
self.vector_store.add_documents(documents)
|
||||
try:
|
||||
self.vector_store.add_documents(documents)
|
||||
|
||||
logger.info(f"Successfully added {len(documents)} document chunks to vector store.")
|
||||
# Only mark documents as processed after successful insertion to vector store
|
||||
processed_file_paths = set()
|
||||
for doc in documents:
|
||||
if 'source' in doc.metadata:
|
||||
processed_file_paths.add(doc.metadata['source'])
|
||||
|
||||
for file_path in processed_file_paths:
|
||||
self._mark_document_processed(file_path)
|
||||
|
||||
logger.info(f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_paths)} files as processed.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error adding documents to vector store: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
def get_all_documents_from_data_dir(data_dir: str = str(DATA_DIR)) -> List[str]:
|
||||
|
||||
@@ -46,26 +46,47 @@ def initialize_vector_store(
|
||||
base_url="http://localhost:11434", # Default Ollama URL
|
||||
)
|
||||
|
||||
# Create or get the vector store
|
||||
vector_store = Qdrant(
|
||||
client=client,
|
||||
collection_name=collection_name,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
# Check if collection exists, if not create it
|
||||
collection_exists = False
|
||||
try:
|
||||
client.get_collection(collection_name)
|
||||
collection_exists = True
|
||||
except Exception:
|
||||
# Collection doesn't exist, we'll create it
|
||||
collection_exists = False
|
||||
|
||||
# If recreate_collection is True, we'll delete and recreate the collection
|
||||
if recreate_collection and collection_name in [
|
||||
col.name for col in client.get_collections().collections
|
||||
]:
|
||||
if recreate_collection and collection_exists:
|
||||
client.delete_collection(collection_name)
|
||||
collection_exists = False
|
||||
|
||||
# Recreate with proper configuration
|
||||
vector_store = Qdrant.from_documents(
|
||||
documents=[],
|
||||
embedding=embeddings,
|
||||
url=f"http://{QDRANT_HOST}:{QDRANT_REST_PORT}",
|
||||
# If collection doesn't exist, create it using the client directly
|
||||
if not collection_exists:
|
||||
# Create collection using the Qdrant client directly
|
||||
from qdrant_client.http.models import Distance, VectorParams
|
||||
import numpy as np
|
||||
|
||||
# First, we need to determine the embedding size by creating a sample embedding
|
||||
sample_embedding = embeddings.embed_query("sample text for dimension detection")
|
||||
vector_size = len(sample_embedding)
|
||||
|
||||
# Create the collection with appropriate vector size
|
||||
client.create_collection(
|
||||
collection_name=collection_name,
|
||||
force_recreate=True,
|
||||
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE),
|
||||
)
|
||||
|
||||
# Now create the Qdrant instance connected to the newly created collection
|
||||
vector_store = Qdrant(
|
||||
client=client,
|
||||
collection_name=collection_name,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
else:
|
||||
# Collection exists, just connect to it
|
||||
vector_store = Qdrant(
|
||||
client=client,
|
||||
collection_name=collection_name,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
|
||||
return vector_store
|
||||
@@ -116,7 +137,7 @@ OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
||||
OPENROUTER_EMBEDDING_MODEL = os.getenv("OPENROUTER_EMBEDDING_MODEL", "openai/text-embedding-ada-002")
|
||||
|
||||
def initialize_vector_store_with_openrouter(
|
||||
collection_name: str = "documents"
|
||||
collection_name: str = "documents_langchain"
|
||||
) -> Qdrant:
|
||||
# Initialize Qdrant client
|
||||
client = QdrantClient(
|
||||
|
||||
Reference in New Issue
Block a user