Working enrichment

This commit is contained in:
2026-02-03 22:55:12 +03:00
parent 8d7e39a603
commit 4cbd5313d2
4 changed files with 134 additions and 60 deletions

View File

@@ -6,14 +6,32 @@ from pathlib import Path
from typing import List, Dict, Any
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
PyPDFLoader,
UnstructuredWordDocumentLoader,
UnstructuredPowerPointLoader,
PandasExcelLoader,
UnstructuredImageLoader,
UnstructuredODTLoader,
)
from langchain_community.document_loaders import PyPDFLoader
# Dynamically import other loaders to handle optional dependencies
try:
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
except ImportError:
UnstructuredWordDocumentLoader = None
try:
from langchain_community.document_loaders import UnstructuredPowerPointLoader
except ImportError:
UnstructuredPowerPointLoader = None
try:
from langchain_community.document_loaders import UnstructuredExcelLoader
except ImportError:
UnstructuredExcelLoader = None
try:
from langchain_community.document_loaders import UnstructuredImageLoader
except ImportError:
UnstructuredImageLoader = None
try:
from langchain_community.document_loaders import UnstructuredODTLoader
except ImportError:
UnstructuredODTLoader = None
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
@@ -88,19 +106,35 @@ class DocumentEnricher:
def _get_loader_for_extension(self, file_path: str):
"""Get the appropriate loader for a given file extension."""
ext = Path(file_path).suffix.lower()
if ext == ".pdf":
return PyPDFLoader(file_path)
elif ext in [".docx", ".doc"]:
return UnstructuredWordDocumentLoader(file_path)
if UnstructuredWordDocumentLoader is None:
logger.warning(f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping.")
return None
return UnstructuredWordDocumentLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext == ".pptx":
return UnstructuredPowerPointLoader(file_path)
if UnstructuredPowerPointLoader is None:
logger.warning(f"UnstructuredPowerPointLoader not available for {file_path}. Skipping.")
return None
return UnstructuredPowerPointLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext in [".xlsx", ".xls"]:
return PandasExcelLoader(file_path)
if UnstructuredExcelLoader is None:
logger.warning(f"UnstructuredExcelLoader not available for {file_path}. Skipping.")
return None
return UnstructuredExcelLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
return UnstructuredImageLoader(file_path)
if UnstructuredImageLoader is None:
logger.warning(f"UnstructuredImageLoader not available for {file_path}. Skipping.")
return None
# Use OCR strategy for images to extract text
return UnstructuredImageLoader(file_path, **{"strategy": "ocr_only", "languages": ["rus"]})
elif ext == ".odt":
return UnstructuredODTLoader(file_path)
if UnstructuredODTLoader is None:
logger.warning(f"UnstructuredODTLoader not available for {file_path}. Skipping.")
return None
return UnstructuredODTLoader(file_path, **{"strategy": "hi_res", "languages": ["rus"]})
else:
# For text files and unsupported formats, try to load as text
try:
@@ -114,25 +148,25 @@ class DocumentEnricher:
def load_and_split_documents(self, file_paths: List[str]) -> List[Document]:
"""Load documents from file paths and split them appropriately."""
all_docs = []
for file_path in file_paths:
if self._is_document_processed(file_path):
logger.info(f"Skipping already processed document: {file_path}")
continue
logger.info(f"Processing document: {file_path}")
# Get the appropriate loader for the file extension
loader = self._get_loader_for_extension(file_path)
if loader is None:
# For unsupported formats that we tried to load as text
continue
try:
# Load the document(s)
docs = loader.load()
# Add metadata to each document
for doc in docs:
# Extract metadata from the original file
@@ -140,46 +174,56 @@ class DocumentEnricher:
doc.metadata["filename"] = Path(file_path).name
doc.metadata["file_path"] = file_path
doc.metadata["file_size"] = os.path.getsize(file_path)
# Add page number if available in original metadata
if "page" in doc.metadata:
doc.metadata["page_number"] = doc.metadata["page"]
# Add file extension as metadata
doc.metadata["file_extension"] = Path(file_path).suffix
# Split documents if they are too large
split_docs = self.text_splitter.split_documents(docs)
# Add to the collection
all_docs.extend(split_docs)
# Mark document as processed
self._mark_document_processed(file_path)
except Exception as e:
logger.error(f"Error processing {file_path}: {str(e)}")
continue
return all_docs
def enrich_and_store(self, file_paths: List[str]):
"""Load, enrich, and store documents in the vector store."""
logger.info(f"Starting enrichment process for {len(file_paths)} files...")
# Load and split documents
documents = self.load_and_split_documents(file_paths)
if not documents:
logger.info("No new documents to process.")
return
logger.info(f"Loaded and split {len(documents)} document chunks, adding to vector store...")
# Add documents to vector store
self.vector_store.add_documents(documents)
logger.info(f"Successfully added {len(documents)} document chunks to vector store.")
try:
self.vector_store.add_documents(documents)
# Only mark documents as processed after successful insertion to vector store
processed_file_paths = set()
for doc in documents:
if 'source' in doc.metadata:
processed_file_paths.add(doc.metadata['source'])
for file_path in processed_file_paths:
self._mark_document_processed(file_path)
logger.info(f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_paths)} files as processed.")
except Exception as e:
logger.error(f"Error adding documents to vector store: {str(e)}")
raise
def get_all_documents_from_data_dir(data_dir: str = str(DATA_DIR)) -> List[str]: