enrichment with years, events
This commit is contained in:
@@ -1,14 +1,16 @@
|
||||
"""Retrieval module for querying vector storage and returning relevant documents with metadata."""
|
||||
|
||||
import os
|
||||
from typing import List, Optional
|
||||
from typing import List
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from loguru import logger
|
||||
from qdrant_client.http.models import FieldCondition, Filter, MatchAny
|
||||
|
||||
from helpers import extract_russian_event_names, extract_years_from_text
|
||||
from vector_storage import initialize_vector_store
|
||||
|
||||
# Load environment variables
|
||||
@@ -23,6 +25,91 @@ class VectorStoreRetriever(BaseRetriever):
|
||||
vector_store: object # Qdrant vector store instance
|
||||
top_k: int = 5 # Number of documents to retrieve
|
||||
|
||||
def _build_qdrant_filter(
|
||||
self, years: List[int], events: List[str]
|
||||
) -> Filter | None:
|
||||
"""Build a Qdrant payload filter for extracted years and events."""
|
||||
conditions: List[FieldCondition] = []
|
||||
|
||||
if years:
|
||||
conditions.extend(
|
||||
[
|
||||
FieldCondition(
|
||||
key="metadata.years",
|
||||
match=MatchAny(any=years),
|
||||
),
|
||||
FieldCondition(
|
||||
key="years",
|
||||
match=MatchAny(any=years),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
if events:
|
||||
conditions.extend(
|
||||
[
|
||||
FieldCondition(
|
||||
key="metadata.events",
|
||||
match=MatchAny(any=events),
|
||||
),
|
||||
FieldCondition(
|
||||
key="events",
|
||||
match=MatchAny(any=events),
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
if not conditions:
|
||||
return None
|
||||
|
||||
return Filter(should=conditions)
|
||||
|
||||
@staticmethod
|
||||
def _post_filter_documents(
|
||||
documents: List[Document], years: List[int], events: List[str]
|
||||
) -> List[Document]:
|
||||
"""Fallback filter in Python in case vector DB filter cannot be applied."""
|
||||
if not years and not events:
|
||||
return documents
|
||||
|
||||
year_set = set(years)
|
||||
event_set = set(events)
|
||||
filtered: List[Document] = []
|
||||
|
||||
for doc in documents:
|
||||
metadata = doc.metadata or {}
|
||||
doc_years = {
|
||||
int(year)
|
||||
for year in metadata.get("years", [])
|
||||
if isinstance(year, int) or (isinstance(year, str) and year.isdigit())
|
||||
}
|
||||
doc_events = {str(event).lower() for event in metadata.get("events", [])}
|
||||
|
||||
year_match = not year_set or bool(doc_years.intersection(year_set))
|
||||
event_match = not event_set or bool(doc_events.intersection(event_set))
|
||||
|
||||
if year_match and event_match:
|
||||
filtered.append(doc)
|
||||
|
||||
return filtered
|
||||
|
||||
@staticmethod
|
||||
def _merge_unique_documents(documents: List[Document]) -> List[Document]:
|
||||
"""Deduplicate documents while preserving order."""
|
||||
unique_docs: List[Document] = []
|
||||
seen = set()
|
||||
for doc in documents:
|
||||
dedup_key = (
|
||||
doc.metadata.get("source", ""),
|
||||
doc.metadata.get("page_number", doc.metadata.get("page", "")),
|
||||
doc.page_content[:200],
|
||||
)
|
||||
if dedup_key in seen:
|
||||
continue
|
||||
seen.add(dedup_key)
|
||||
unique_docs.append(doc)
|
||||
return unique_docs
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
@@ -39,8 +126,54 @@ class VectorStoreRetriever(BaseRetriever):
|
||||
logger.info(f"Searching for documents related to query: {query[:50]}...")
|
||||
|
||||
try:
|
||||
# Perform similarity search on the vector store
|
||||
results = self.vector_store.similarity_search(query, k=self.top_k)
|
||||
years_in_query = extract_years_from_text(query)
|
||||
events_in_query = extract_russian_event_names(query)
|
||||
search_filter = self._build_qdrant_filter(years_in_query, events_in_query)
|
||||
|
||||
logger.info(
|
||||
f"Extracted query metadata for retrieval: years={years_in_query}, events={events_in_query}"
|
||||
)
|
||||
|
||||
# Main search by original user query.
|
||||
search_k = max(self.top_k * 3, self.top_k)
|
||||
if search_filter is not None:
|
||||
try:
|
||||
results = self.vector_store.similarity_search(
|
||||
query, k=search_k, filter=search_filter
|
||||
)
|
||||
except Exception as filter_error:
|
||||
logger.warning(
|
||||
f"Vector store filter failed, fallback to unfiltered search: {filter_error}"
|
||||
)
|
||||
results = self.vector_store.similarity_search(query, k=search_k)
|
||||
results = self._post_filter_documents(
|
||||
results, years_in_query, events_in_query
|
||||
)
|
||||
else:
|
||||
results = self.vector_store.similarity_search(query, k=search_k)
|
||||
|
||||
# Additional event-focused similarity search if event names are present.
|
||||
if events_in_query:
|
||||
event_results: List[Document] = []
|
||||
for event_name in events_in_query:
|
||||
try:
|
||||
if search_filter is not None:
|
||||
event_docs = self.vector_store.similarity_search(
|
||||
event_name, k=self.top_k, filter=search_filter
|
||||
)
|
||||
else:
|
||||
event_docs = self.vector_store.similarity_search(
|
||||
event_name, k=self.top_k
|
||||
)
|
||||
except Exception as event_search_error:
|
||||
logger.warning(
|
||||
f"Event-focused search failed for '{event_name}': {event_search_error}"
|
||||
)
|
||||
continue
|
||||
event_results.extend(event_docs)
|
||||
results.extend(event_results)
|
||||
|
||||
results = self._merge_unique_documents(results)[: self.top_k]
|
||||
|
||||
logger.info(f"Found {len(results)} relevant documents")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user