Enrichment for llamaindex. It goes for a long time using local model, so better use external model not local, for EMBEDDING

This commit is contained in:
2026-02-04 16:06:01 +03:00
parent f36108d652
commit 3dea3605ad
5 changed files with 402 additions and 22 deletions

View File

@@ -91,10 +91,10 @@ This is a Retrieval Augmented Generation (RAG) solution built using LlamaIndex a
- [x] Optional OpenAI embedding via OpenRouter (commented)
### Phase 4: Document Enrichment
- [ ] Document loading module with appropriate loaders
- [ ] Text splitting strategies implementation
- [ ] Document tracking mechanism
- [ ] CLI command for enrichment
- [x] Document loading module with appropriate loaders
- [x] Text splitting strategies implementation
- [x] Document tracking mechanism
- [x] CLI command for enrichment
### Phase 5: Retrieval Feature
- [ ] Retrieval module configuration