Enrichment for llamaindex. It goes for a long time using local model, so better use external model not local, for EMBEDDING
This commit is contained in:
@@ -91,10 +91,10 @@ This is a Retrieval Augmented Generation (RAG) solution built using LlamaIndex a
|
||||
- [x] Optional OpenAI embedding via OpenRouter (commented)
|
||||
|
||||
### Phase 4: Document Enrichment
|
||||
- [ ] Document loading module with appropriate loaders
|
||||
- [ ] Text splitting strategies implementation
|
||||
- [ ] Document tracking mechanism
|
||||
- [ ] CLI command for enrichment
|
||||
- [x] Document loading module with appropriate loaders
|
||||
- [x] Text splitting strategies implementation
|
||||
- [x] Document tracking mechanism
|
||||
- [x] CLI command for enrichment
|
||||
|
||||
### Phase 5: Retrieval Feature
|
||||
- [ ] Retrieval module configuration
|
||||
|
||||
Reference in New Issue
Block a user