2026-02-03 23:25:24 +03:00
|
|
|
"""Retrieval module for querying vector storage and returning relevant documents with metadata."""
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
from typing import List, Optional
|
2026-02-05 00:08:59 +03:00
|
|
|
from dotenv import load_dotenv
|
2026-02-03 23:25:24 +03:00
|
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
|
|
from vector_storage import initialize_vector_store
|
|
|
|
|
|
2026-02-05 00:08:59 +03:00
|
|
|
# Load environment variables
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
2026-02-03 23:25:24 +03:00
|
|
|
|
|
|
|
|
class VectorStoreRetriever(BaseRetriever):
|
|
|
|
|
"""
|
|
|
|
|
A custom retriever that uses the Qdrant vector store to retrieve relevant documents.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
vector_store: object # Qdrant vector store instance
|
|
|
|
|
top_k: int = 5 # Number of documents to retrieve
|
|
|
|
|
|
|
|
|
|
def _get_relevant_documents(
|
|
|
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
|
|
|
) -> List[Document]:
|
|
|
|
|
"""
|
|
|
|
|
Retrieve relevant documents based on the query.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
query: The query string to search for
|
|
|
|
|
run_manager: Callback manager for the run
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of relevant documents with metadata
|
|
|
|
|
"""
|
|
|
|
|
logger.info(f"Searching for documents related to query: {query[:50]}...")
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Perform similarity search on the vector store
|
|
|
|
|
results = self.vector_store.similarity_search(query, k=self.top_k)
|
|
|
|
|
|
|
|
|
|
logger.info(f"Found {len(results)} relevant documents")
|
|
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error during similarity search: {str(e)}")
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_retriever(collection_name: str = "documents_langchain", top_k: int = 5):
|
|
|
|
|
"""
|
|
|
|
|
Create and return a retriever instance connected to the vector store.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
collection_name: Name of the Qdrant collection to use
|
|
|
|
|
top_k: Number of documents to retrieve
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
VectorStoreRetriever instance
|
|
|
|
|
"""
|
|
|
|
|
logger.info(f"Initializing vector store for retrieval from collection: {collection_name}")
|
|
|
|
|
|
|
|
|
|
# Initialize the vector store
|
|
|
|
|
vector_store = initialize_vector_store(collection_name=collection_name)
|
|
|
|
|
|
|
|
|
|
# Create and return the retriever
|
|
|
|
|
retriever = VectorStoreRetriever(vector_store=vector_store, top_k=top_k)
|
|
|
|
|
|
|
|
|
|
return retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def search_documents(query: str, collection_name: str = "documents_langchain", top_k: int = 5) -> List[Document]:
|
|
|
|
|
"""
|
|
|
|
|
Search for documents in the vector store based on the query.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
query: The query string to search for
|
|
|
|
|
collection_name: Name of the Qdrant collection to use
|
|
|
|
|
top_k: Number of documents to retrieve
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of documents with metadata
|
|
|
|
|
"""
|
|
|
|
|
logger.info(f"Starting document search for query: {query}")
|
|
|
|
|
|
|
|
|
|
# Create the retriever
|
|
|
|
|
retriever = create_retriever(collection_name=collection_name, top_k=top_k)
|
|
|
|
|
|
|
|
|
|
# Perform the search
|
|
|
|
|
results = retriever.invoke(query)
|
|
|
|
|
|
|
|
|
|
logger.info(f"Search completed, returned {len(results)} documents")
|
|
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def search_documents_with_metadata(
|
|
|
|
|
query: str,
|
|
|
|
|
collection_name: str = "documents_langchain",
|
|
|
|
|
top_k: int = 5
|
|
|
|
|
) -> List[dict]:
|
|
|
|
|
"""
|
|
|
|
|
Search for documents and return them with detailed metadata.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
query: The query string to search for
|
|
|
|
|
collection_name: Name of the Qdrant collection to use
|
|
|
|
|
top_k: Number of documents to retrieve
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of dictionaries containing document content and metadata
|
|
|
|
|
"""
|
|
|
|
|
logger.info(f"Starting document search with metadata for query: {query}")
|
|
|
|
|
|
|
|
|
|
# Initialize the vector store
|
|
|
|
|
vector_store = initialize_vector_store(collection_name=collection_name)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Standard similarity search
|
|
|
|
|
documents = vector_store.similarity_search(query, k=top_k)
|
|
|
|
|
|
|
|
|
|
# Format results to include content and metadata
|
|
|
|
|
formatted_results = []
|
|
|
|
|
for doc in documents:
|
|
|
|
|
formatted_result = {
|
|
|
|
|
"content": doc.page_content,
|
|
|
|
|
"metadata": doc.metadata,
|
|
|
|
|
"source": doc.metadata.get("source", "Unknown"),
|
|
|
|
|
"filename": doc.metadata.get("filename", "Unknown"),
|
|
|
|
|
"page_number": doc.metadata.get("page_number", doc.metadata.get("page", "N/A")),
|
|
|
|
|
"file_extension": doc.metadata.get("file_extension", "N/A"),
|
|
|
|
|
"file_size": doc.metadata.get("file_size", "N/A")
|
|
|
|
|
}
|
|
|
|
|
formatted_results.append(formatted_result)
|
|
|
|
|
|
|
|
|
|
logger.info(f"Metadata search completed, returned {len(formatted_results)} documents")
|
|
|
|
|
|
|
|
|
|
return formatted_results
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error during document search with metadata: {str(e)}")
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# Example usage
|
|
|
|
|
query = "What is the main topic discussed in the documents?"
|
|
|
|
|
results = search_documents_with_metadata(query, top_k=5)
|
|
|
|
|
|
|
|
|
|
print(f"Found {len(results)} documents:")
|
|
|
|
|
for i, result in enumerate(results, 1):
|
|
|
|
|
print(f"\n{i}. Source: {result['source']}")
|
|
|
|
|
print(f" Filename: {result['filename']}")
|
|
|
|
|
print(f" Page: {result['page_number']}")
|
|
|
|
|
print(f" Content preview: {result['content'][:200]}...")
|
|
|
|
|
print(f" Metadata: {result['metadata']}")
|