2026-02-03 20:42:09 +03:00
|
|
|
"""Vector storage module using Qdrant and Ollama embeddings for the RAG solution."""
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
from typing import Optional
|
2026-02-03 20:52:08 +03:00
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
2026-02-03 20:42:09 +03:00
|
|
|
from langchain_community.vectorstores import Qdrant
|
|
|
|
|
from langchain_core.documents import Document
|
2026-02-03 20:52:08 +03:00
|
|
|
from langchain_ollama import OllamaEmbeddings
|
2026-02-03 20:42:09 +03:00
|
|
|
from qdrant_client import QdrantClient
|
|
|
|
|
|
|
|
|
|
# Load environment variables
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
|
# Qdrant configuration
|
|
|
|
|
QDRANT_HOST = os.getenv("QDRANT_HOST", "localhost")
|
|
|
|
|
QDRANT_REST_PORT = int(os.getenv("QDRANT_REST_PORT", 6333))
|
|
|
|
|
QDRANT_GRPC_PORT = int(os.getenv("QDRANT_GRPC_PORT", 6334))
|
|
|
|
|
|
|
|
|
|
# Ollama embedding model configuration
|
|
|
|
|
OLLAMA_EMBEDDING_MODEL = os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def initialize_vector_store(
|
2026-02-03 20:52:08 +03:00
|
|
|
collection_name: str = "documents_langchain", recreate_collection: bool = False
|
2026-02-03 20:42:09 +03:00
|
|
|
) -> Qdrant:
|
|
|
|
|
"""
|
|
|
|
|
Initialize and return a Qdrant vector store with Ollama embeddings.
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
Args:
|
|
|
|
|
collection_name: Name of the Qdrant collection to use
|
|
|
|
|
recreate_collection: Whether to recreate the collection if it exists
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
Returns:
|
|
|
|
|
Initialized Qdrant vector store
|
|
|
|
|
"""
|
|
|
|
|
# Initialize Qdrant client
|
|
|
|
|
client = QdrantClient(
|
|
|
|
|
host=QDRANT_HOST,
|
|
|
|
|
port=QDRANT_REST_PORT,
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# Initialize Ollama embeddings
|
|
|
|
|
embeddings = OllamaEmbeddings(
|
|
|
|
|
model=OLLAMA_EMBEDDING_MODEL,
|
2026-02-03 20:52:08 +03:00
|
|
|
base_url="http://localhost:11434", # Default Ollama URL
|
2026-02-03 20:42:09 +03:00
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# Create or get the vector store
|
|
|
|
|
vector_store = Qdrant(
|
|
|
|
|
client=client,
|
|
|
|
|
collection_name=collection_name,
|
|
|
|
|
embeddings=embeddings,
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# If recreate_collection is True, we'll delete and recreate the collection
|
2026-02-03 20:52:08 +03:00
|
|
|
if recreate_collection and collection_name in [
|
|
|
|
|
col.name for col in client.get_collections().collections
|
|
|
|
|
]:
|
2026-02-03 20:42:09 +03:00
|
|
|
client.delete_collection(collection_name)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# Recreate with proper configuration
|
|
|
|
|
vector_store = Qdrant.from_documents(
|
|
|
|
|
documents=[],
|
|
|
|
|
embedding=embeddings,
|
|
|
|
|
url=f"http://{QDRANT_HOST}:{QDRANT_REST_PORT}",
|
|
|
|
|
collection_name=collection_name,
|
2026-02-03 20:52:08 +03:00
|
|
|
force_recreate=True,
|
2026-02-03 20:42:09 +03:00
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_documents_to_vector_store(
|
2026-02-03 20:52:08 +03:00
|
|
|
vector_store: Qdrant, documents: list[Document], batch_size: int = 10
|
2026-02-03 20:42:09 +03:00
|
|
|
) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Add documents to the vector store.
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
Args:
|
|
|
|
|
vector_store: Initialized Qdrant vector store
|
|
|
|
|
documents: List of documents to add
|
|
|
|
|
batch_size: Number of documents to add in each batch
|
|
|
|
|
"""
|
|
|
|
|
# Add documents to the vector store in batches
|
|
|
|
|
for i in range(0, len(documents), batch_size):
|
2026-02-03 20:52:08 +03:00
|
|
|
batch = documents[i : i + batch_size]
|
2026-02-03 20:42:09 +03:00
|
|
|
vector_store.add_documents(batch)
|
|
|
|
|
|
|
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
def search_vector_store(vector_store: Qdrant, query: str, top_k: int = 5) -> list:
|
2026-02-03 20:42:09 +03:00
|
|
|
"""
|
|
|
|
|
Search the vector store for similar documents.
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
Args:
|
|
|
|
|
vector_store: Initialized Qdrant vector store
|
|
|
|
|
query: Query string to search for
|
|
|
|
|
top_k: Number of top results to return
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
Returns:
|
|
|
|
|
List of similar documents
|
|
|
|
|
"""
|
|
|
|
|
return vector_store.similarity_search(query, k=top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Just in case add possibility to connect via openai embedding, using openrouter api key.
|
|
|
|
|
# Comment this section, so it can be used in the future.
|
|
|
|
|
"""
|
|
|
|
|
# Alternative implementation using OpenAI embeddings via OpenRouter
|
|
|
|
|
# Uncomment and configure as needed
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
from langchain_openai import OpenAIEmbeddings
|
|
|
|
|
|
|
|
|
|
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
|
|
|
|
OPENROUTER_EMBEDDING_MODEL = os.getenv("OPENROUTER_EMBEDDING_MODEL", "openai/text-embedding-ada-002")
|
|
|
|
|
|
|
|
|
|
def initialize_vector_store_with_openrouter(
|
|
|
|
|
collection_name: str = "documents"
|
|
|
|
|
) -> Qdrant:
|
|
|
|
|
# Initialize Qdrant client
|
|
|
|
|
client = QdrantClient(
|
|
|
|
|
host=QDRANT_HOST,
|
|
|
|
|
port=QDRANT_REST_PORT,
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# Initialize OpenAI embeddings via OpenRouter
|
|
|
|
|
embeddings = OpenAIEmbeddings(
|
|
|
|
|
model=OPENROUTER_EMBEDDING_MODEL,
|
|
|
|
|
openai_api_key=OPENROUTER_API_KEY,
|
|
|
|
|
openai_api_base="https://openrouter.ai/api/v1"
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
# Create or get the vector store
|
|
|
|
|
vector_store = Qdrant(
|
|
|
|
|
client=client,
|
|
|
|
|
collection_name=collection_name,
|
|
|
|
|
embeddings=embeddings,
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-03 20:42:09 +03:00
|
|
|
return vector_store
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# Example usage
|
2026-02-03 20:52:08 +03:00
|
|
|
print(
|
|
|
|
|
f"Initializing vector store with Ollama embedding model: {OLLAMA_EMBEDDING_MODEL}"
|
|
|
|
|
)
|
2026-02-03 20:42:09 +03:00
|
|
|
vector_store = initialize_vector_store()
|
2026-02-03 20:52:08 +03:00
|
|
|
print("Vector store initialized successfully!")
|