2026-02-03 20:52:08 +03:00
|
|
|
"""Document enrichment module for loading documents into vector storage."""
|
|
|
|
|
|
|
|
|
|
import hashlib
|
2026-02-11 11:23:50 +03:00
|
|
|
import os
|
2026-02-03 20:52:08 +03:00
|
|
|
from pathlib import Path
|
2026-02-11 11:23:50 +03:00
|
|
|
from typing import Iterator, List, Tuple
|
|
|
|
|
|
2026-02-05 00:08:59 +03:00
|
|
|
from dotenv import load_dotenv
|
2026-02-11 11:23:50 +03:00
|
|
|
from langchain_community.document_loaders import PyPDFLoader
|
2026-02-03 20:52:08 +03:00
|
|
|
from langchain_core.documents import Document
|
|
|
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 22:55:12 +03:00
|
|
|
# Dynamically import other loaders to handle optional dependencies
|
|
|
|
|
try:
|
|
|
|
|
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
|
|
|
|
|
except ImportError:
|
|
|
|
|
UnstructuredWordDocumentLoader = None
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from langchain_community.document_loaders import UnstructuredPowerPointLoader
|
|
|
|
|
except ImportError:
|
|
|
|
|
UnstructuredPowerPointLoader = None
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from langchain_community.document_loaders import UnstructuredExcelLoader
|
|
|
|
|
except ImportError:
|
|
|
|
|
UnstructuredExcelLoader = None
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from langchain_community.document_loaders import UnstructuredImageLoader
|
|
|
|
|
except ImportError:
|
|
|
|
|
UnstructuredImageLoader = None
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from langchain_community.document_loaders import UnstructuredODTLoader
|
|
|
|
|
except ImportError:
|
|
|
|
|
UnstructuredODTLoader = None
|
2026-02-11 11:23:50 +03:00
|
|
|
from loguru import logger
|
|
|
|
|
from sqlalchemy import Column, Integer, String, create_engine
|
2026-02-03 20:52:08 +03:00
|
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
|
from sqlalchemy.orm import sessionmaker
|
|
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
from helpers import (
|
|
|
|
|
LocalFilesystemAdaptiveCollection,
|
|
|
|
|
YandexDiskAdaptiveCollection,
|
|
|
|
|
_AdaptiveCollection,
|
|
|
|
|
_AdaptiveFile,
|
|
|
|
|
extract_russian_event_names,
|
|
|
|
|
extract_years_from_text,
|
|
|
|
|
)
|
2026-02-10 13:20:19 +03:00
|
|
|
|
2026-02-05 00:08:59 +03:00
|
|
|
# Load environment variables
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
|
|
|
|
|
# Define the path to the data directory
|
|
|
|
|
DATA_DIR = Path("../../../data").resolve()
|
|
|
|
|
DB_PATH = Path("document_tracking.db").resolve()
|
2026-02-10 22:19:27 +03:00
|
|
|
ENRICHMENT_SOURCE = os.getenv("ENRICHMENT_SOURCE", "local").lower()
|
|
|
|
|
ENRICHMENT_LOCAL_PATH = os.getenv("ENRICHMENT_LOCAL_PATH")
|
|
|
|
|
ENRICHMENT_YADISK_PATH = os.getenv("ENRICHMENT_YADISK_PATH")
|
|
|
|
|
YADISK_TOKEN = os.getenv("YADISK_TOKEN")
|
|
|
|
|
|
|
|
|
|
SUPPORTED_EXTENSIONS = {
|
|
|
|
|
".pdf",
|
|
|
|
|
".docx",
|
|
|
|
|
".doc",
|
|
|
|
|
".pptx",
|
|
|
|
|
".xlsx",
|
|
|
|
|
".xls",
|
|
|
|
|
".jpg",
|
|
|
|
|
".jpeg",
|
|
|
|
|
".png",
|
|
|
|
|
".gif",
|
|
|
|
|
".bmp",
|
|
|
|
|
".tiff",
|
|
|
|
|
".webp",
|
|
|
|
|
".odt",
|
|
|
|
|
}
|
2026-02-03 20:52:08 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
|
|
|
|
|
def try_guess_source(extension: str) -> str:
|
|
|
|
|
if extension in [".xlsx", "xls"]:
|
|
|
|
|
return "таблица"
|
|
|
|
|
elif extension in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
|
|
|
|
return "изображение"
|
|
|
|
|
elif extension in [".pptx"]:
|
|
|
|
|
return "презентация"
|
|
|
|
|
else:
|
|
|
|
|
return "документ"
|
|
|
|
|
|
|
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
Base = declarative_base()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ProcessedDocument(Base):
|
|
|
|
|
"""Database model for tracking processed documents."""
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
__tablename__ = "processed_documents"
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
id = Column(Integer, primary_key=True)
|
|
|
|
|
file_path = Column(String, unique=True, nullable=False)
|
|
|
|
|
file_hash = Column(String, nullable=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DocumentEnricher:
|
|
|
|
|
"""Class responsible for enriching documents and loading them to vector storage."""
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
def __init__(self, vector_store):
|
|
|
|
|
self.vector_store = vector_store
|
|
|
|
|
self.text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
chunk_size=1000,
|
|
|
|
|
chunk_overlap=200,
|
|
|
|
|
length_function=len,
|
|
|
|
|
)
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Initialize database for tracking processed documents
|
|
|
|
|
self._init_db()
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
def _init_db(self):
|
|
|
|
|
"""Initialize the SQLite database for tracking processed documents."""
|
|
|
|
|
self.engine = create_engine(f"sqlite:///{DB_PATH}")
|
|
|
|
|
Base.metadata.create_all(self.engine)
|
|
|
|
|
Session = sessionmaker(bind=self.engine)
|
|
|
|
|
self.session = Session()
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
def _get_file_hash(self, file_path: str) -> str:
|
|
|
|
|
"""Calculate SHA256 hash of a file."""
|
|
|
|
|
hash_sha256 = hashlib.sha256()
|
|
|
|
|
with open(file_path, "rb") as f:
|
|
|
|
|
# Read file in chunks to handle large files
|
|
|
|
|
for chunk in iter(lambda: f.read(4096), b""):
|
|
|
|
|
hash_sha256.update(chunk)
|
|
|
|
|
return hash_sha256.hexdigest()
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
def _is_document_hash_processed(self, file_hash: str) -> bool:
|
|
|
|
|
"""Check if a document hash has already been processed."""
|
2026-02-11 11:23:50 +03:00
|
|
|
existing = (
|
|
|
|
|
self.session.query(ProcessedDocument).filter_by(file_hash=file_hash).first()
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
return existing is not None
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
def _mark_document_processed(self, file_identifier: str, file_hash: str):
|
2026-02-03 20:52:08 +03:00
|
|
|
"""Mark a document as processed in the database."""
|
2026-02-11 11:23:50 +03:00
|
|
|
doc_record = ProcessedDocument(file_path=file_identifier, file_hash=file_hash)
|
2026-02-03 20:52:08 +03:00
|
|
|
self.session.add(doc_record)
|
|
|
|
|
self.session.commit()
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
def _get_loader_for_extension(self, file_path: str):
|
|
|
|
|
"""Get the appropriate loader for a given file extension."""
|
|
|
|
|
ext = Path(file_path).suffix.lower()
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
if ext == ".pdf":
|
|
|
|
|
return PyPDFLoader(file_path)
|
|
|
|
|
elif ext in [".docx", ".doc"]:
|
2026-02-03 22:55:12 +03:00
|
|
|
if UnstructuredWordDocumentLoader is None:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.warning(
|
|
|
|
|
f"UnstructuredWordDocumentLoader not available for {file_path}. Skipping."
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
return None
|
2026-02-11 11:23:50 +03:00
|
|
|
return UnstructuredWordDocumentLoader(
|
|
|
|
|
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
elif ext == ".pptx":
|
2026-02-03 22:55:12 +03:00
|
|
|
if UnstructuredPowerPointLoader is None:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.warning(
|
|
|
|
|
f"UnstructuredPowerPointLoader not available for {file_path}. Skipping."
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
return None
|
2026-02-11 11:23:50 +03:00
|
|
|
return UnstructuredPowerPointLoader(
|
|
|
|
|
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
elif ext in [".xlsx", ".xls"]:
|
2026-02-03 22:55:12 +03:00
|
|
|
if UnstructuredExcelLoader is None:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.warning(
|
|
|
|
|
f"UnstructuredExcelLoader not available for {file_path}. Skipping."
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
return None
|
2026-02-11 11:23:50 +03:00
|
|
|
return UnstructuredExcelLoader(
|
|
|
|
|
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
2026-02-03 22:55:12 +03:00
|
|
|
if UnstructuredImageLoader is None:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.warning(
|
|
|
|
|
f"UnstructuredImageLoader not available for {file_path}. Skipping."
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
return None
|
|
|
|
|
# Use OCR strategy for images to extract text
|
2026-02-11 11:23:50 +03:00
|
|
|
return UnstructuredImageLoader(
|
|
|
|
|
file_path, **{"strategy": "ocr_only", "languages": ["rus"]}
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
elif ext == ".odt":
|
2026-02-03 22:55:12 +03:00
|
|
|
if UnstructuredODTLoader is None:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.warning(
|
|
|
|
|
f"UnstructuredODTLoader not available for {file_path}. Skipping."
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
return None
|
2026-02-11 11:23:50 +03:00
|
|
|
return UnstructuredODTLoader(
|
|
|
|
|
file_path, **{"strategy": "hi_res", "languages": ["rus"]}
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
else:
|
2026-02-10 22:19:27 +03:00
|
|
|
return None
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
def _load_one_adaptive_file(
|
|
|
|
|
self, adaptive_file: _AdaptiveFile
|
|
|
|
|
) -> Tuple[List[Document], str | None]:
|
|
|
|
|
"""Load and split one adaptive file by using its local working callback."""
|
|
|
|
|
loaded_docs: List[Document] = []
|
|
|
|
|
file_hash: str | None = None
|
2026-02-11 11:23:50 +03:00
|
|
|
source_identifier = try_guess_source(adaptive_file.extension)
|
2026-02-10 22:19:27 +03:00
|
|
|
extension = adaptive_file.extension.lower()
|
|
|
|
|
|
|
|
|
|
def process_local_file(local_file_path: str):
|
|
|
|
|
nonlocal loaded_docs, file_hash
|
|
|
|
|
|
|
|
|
|
file_hash = self._get_file_hash(local_file_path)
|
|
|
|
|
if self._is_document_hash_processed(file_hash):
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.info(
|
|
|
|
|
f"Skipping already processed document hash for: {source_identifier}"
|
|
|
|
|
)
|
2026-02-10 22:19:27 +03:00
|
|
|
return
|
|
|
|
|
|
|
|
|
|
loader = self._get_loader_for_extension(local_file_path)
|
2026-02-03 20:52:08 +03:00
|
|
|
if loader is None:
|
2026-02-10 22:19:27 +03:00
|
|
|
logger.warning(f"No loader available for file: {source_identifier}")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
docs = loader.load()
|
|
|
|
|
for doc in docs:
|
|
|
|
|
doc.metadata["source"] = source_identifier
|
|
|
|
|
doc.metadata["filename"] = adaptive_file.filename
|
|
|
|
|
doc.metadata["file_path"] = source_identifier
|
|
|
|
|
doc.metadata["file_size"] = os.path.getsize(local_file_path)
|
|
|
|
|
doc.metadata["file_extension"] = extension
|
|
|
|
|
|
|
|
|
|
if "page" in doc.metadata:
|
|
|
|
|
doc.metadata["page_number"] = doc.metadata["page"]
|
|
|
|
|
|
|
|
|
|
split_docs = self.text_splitter.split_documents(docs)
|
|
|
|
|
for chunk in split_docs:
|
|
|
|
|
years = extract_years_from_text(chunk.page_content)
|
|
|
|
|
events = extract_russian_event_names(chunk.page_content)
|
|
|
|
|
chunk.metadata["years"] = years
|
|
|
|
|
chunk.metadata["events"] = events
|
|
|
|
|
|
|
|
|
|
loaded_docs = split_docs
|
|
|
|
|
|
|
|
|
|
adaptive_file.work_with_file_locally(process_local_file)
|
|
|
|
|
return loaded_docs, file_hash
|
|
|
|
|
|
|
|
|
|
def load_and_split_documents(
|
|
|
|
|
self, adaptive_collection: _AdaptiveCollection, recursive: bool = True
|
2026-02-11 11:23:50 +03:00
|
|
|
) -> Iterator[Tuple[List[Document], List[Tuple[str, str]]]]:
|
2026-02-10 22:19:27 +03:00
|
|
|
"""Load documents from adaptive collection and split them appropriately."""
|
2026-02-11 11:23:50 +03:00
|
|
|
docs_chunk: List[Document] = []
|
2026-02-10 22:19:27 +03:00
|
|
|
processed_file_records: dict[str, str] = {}
|
|
|
|
|
|
|
|
|
|
for adaptive_file in adaptive_collection.iterate(recursive=recursive):
|
2026-02-11 11:23:50 +03:00
|
|
|
if len(processed_file_records) >= 2:
|
|
|
|
|
yield docs_chunk, list(processed_file_records.items())
|
|
|
|
|
docs_chunk = []
|
|
|
|
|
processed_file_records = {}
|
|
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
if adaptive_file.extension.lower() not in SUPPORTED_EXTENSIONS:
|
|
|
|
|
logger.debug(
|
|
|
|
|
f"Skipping unsupported file extension for {adaptive_file.filename}: {adaptive_file.extension}"
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
continue
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.info(f"Processing document: {adaptive_file.filename}")
|
2026-02-03 20:52:08 +03:00
|
|
|
try:
|
2026-02-10 22:19:27 +03:00
|
|
|
split_docs, file_hash = self._load_one_adaptive_file(adaptive_file)
|
|
|
|
|
if split_docs:
|
2026-02-11 11:23:50 +03:00
|
|
|
docs_chunk.extend(split_docs)
|
2026-02-10 22:19:27 +03:00
|
|
|
if file_hash:
|
2026-02-11 11:23:50 +03:00
|
|
|
processed_file_records[adaptive_file.filename] = file_hash
|
2026-02-03 20:52:08 +03:00
|
|
|
except Exception as e:
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.error(f"Error processing {adaptive_file.filename}: {str(e)}")
|
2026-02-03 20:52:08 +03:00
|
|
|
continue
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
def enrich_and_store(self, adaptive_collection: _AdaptiveCollection):
|
2026-02-03 20:52:08 +03:00
|
|
|
"""Load, enrich, and store documents in the vector store."""
|
2026-02-10 22:19:27 +03:00
|
|
|
logger.info("Starting enrichment process...")
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Load and split documents
|
2026-02-11 11:23:50 +03:00
|
|
|
for documents, processed_file_records in self.load_and_split_documents(
|
2026-02-10 22:19:27 +03:00
|
|
|
adaptive_collection
|
2026-02-11 11:23:50 +03:00
|
|
|
):
|
|
|
|
|
if not documents:
|
|
|
|
|
logger.info("No new documents to process.")
|
|
|
|
|
return
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.info(
|
|
|
|
|
f"Loaded and split {len(documents)} document chunks, adding to vector store..."
|
|
|
|
|
)
|
|
|
|
|
logger.debug(
|
|
|
|
|
f"Documents len: {len(documents)}, processed_file_records len: {len(processed_file_records)}"
|
|
|
|
|
)
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
# Add documents to vector store
|
|
|
|
|
try:
|
|
|
|
|
self.vector_store.add_documents(documents)
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
# Only mark documents as processed after successful insertion to vector store
|
|
|
|
|
for file_identifier, file_hash in processed_file_records:
|
|
|
|
|
self._mark_document_processed(file_identifier, file_hash)
|
2026-02-03 22:55:12 +03:00
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
logger.info(
|
|
|
|
|
f"Successfully added {len(documents)} document chunks to vector store and marked {len(processed_file_records)} files as processed."
|
|
|
|
|
)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error adding documents to vector store: {str(e)}")
|
|
|
|
|
raise
|
2026-02-03 20:52:08 +03:00
|
|
|
|
|
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
def get_enrichment_adaptive_collection() -> _AdaptiveCollection:
|
2026-02-10 22:19:27 +03:00
|
|
|
"""Create adaptive collection based on environment source configuration."""
|
|
|
|
|
source = ENRICHMENT_SOURCE
|
|
|
|
|
if source == "local":
|
2026-02-11 11:23:50 +03:00
|
|
|
local_path = ENRICHMENT_LOCAL_PATH
|
|
|
|
|
if local_path is None:
|
|
|
|
|
raise RuntimeError(
|
|
|
|
|
"Enrichment strategy is local, but no ENRICHMENT_LOCAL_PATH is defined!"
|
|
|
|
|
)
|
|
|
|
|
|
2026-02-10 22:19:27 +03:00
|
|
|
logger.info(f"Using local adaptive collection from path: {local_path}")
|
|
|
|
|
return LocalFilesystemAdaptiveCollection(local_path)
|
|
|
|
|
|
|
|
|
|
if source == "yadisk":
|
|
|
|
|
if not YADISK_TOKEN:
|
|
|
|
|
raise ValueError("YADISK_TOKEN must be set when ENRICHMENT_SOURCE=yadisk")
|
|
|
|
|
if not ENRICHMENT_YADISK_PATH:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"ENRICHMENT_YADISK_PATH must be set when ENRICHMENT_SOURCE=yadisk"
|
|
|
|
|
)
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Using Yandex Disk adaptive collection from path: {ENRICHMENT_YADISK_PATH}"
|
|
|
|
|
)
|
|
|
|
|
return YandexDiskAdaptiveCollection(
|
|
|
|
|
token=YADISK_TOKEN,
|
|
|
|
|
base_dir=ENRICHMENT_YADISK_PATH,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Unsupported ENRICHMENT_SOURCE='{source}'. Allowed values: local, yadisk"
|
|
|
|
|
)
|
2026-02-03 20:52:08 +03:00
|
|
|
|
|
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
def run_enrichment_process(vector_store):
|
2026-02-03 20:52:08 +03:00
|
|
|
"""Run the full enrichment process."""
|
2026-02-10 22:19:27 +03:00
|
|
|
logger.info("Starting document enrichment process")
|
|
|
|
|
|
2026-02-11 11:23:50 +03:00
|
|
|
adaptive_collection = get_enrichment_adaptive_collection()
|
|
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Initialize the document enricher
|
|
|
|
|
enricher = DocumentEnricher(vector_store)
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Run the enrichment process
|
2026-02-10 22:19:27 +03:00
|
|
|
enricher.enrich_and_store(adaptive_collection)
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
logger.info("Document enrichment process completed!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# Example usage
|
|
|
|
|
from vector_storage import initialize_vector_store
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Initialize vector store
|
|
|
|
|
vector_store = initialize_vector_store()
|
2026-02-11 11:23:50 +03:00
|
|
|
|
2026-02-03 20:52:08 +03:00
|
|
|
# Run enrichment process
|
2026-02-10 13:20:19 +03:00
|
|
|
run_enrichment_process(vector_store)
|