Files
rag-solution/services/rag/langchain/helpers.py

108 lines
3.1 KiB
Python
Raw Normal View History

2026-02-10 13:20:19 +03:00
"""Helper utilities for metadata extraction from Russian text."""
import re
from typing import List
_YEAR_PATTERN = re.compile(r"(?<!\d)(1\d{3}|20\d{2}|2100)(?!\d)")
_EVENT_KEYWORDS = (
"конференц",
"форум",
"выставк",
"фестивал",
"саммит",
"чемпионат",
"олимпиад",
"кубок",
"конкурс",
"вебинар",
"семинар",
"лекци",
"презентаци",
"хакатон",
"митап",
"встреч",
"съезд",
"конгресс",
)
_EVENT_PHRASE_PATTERN = re.compile(
r"\b("
r"конференц(?:ия|ии|ию|ией)?|"
r"форум(?:а|е|у|ом)?|"
r"выставк(?:а|и|е|у|ой)?|"
r"фестивал(?:ь|я|е|ю|ем)?|"
r"саммит(?:а|е|у|ом)?|"
r"чемпионат(?:а|е|у|ом)?|"
r"олимпиад(?:а|ы|е|у|ой)?|"
r"кубок(?:а|е|у|ом)?|"
r"конкурс(?:а|е|у|ом)?|"
r"вебинар(?:а|е|у|ом)?|"
r"семинар(?:а|е|у|ом)?|"
r"лекци(?:я|и|ю|ей)?|"
r"презентаци(?:я|и|ю|ей)?|"
r"хакатон(?:а|е|у|ом)?|"
r"митап(?:а|е|у|ом)?|"
r"встреч(?:а|и|е|у|ей)?|"
r"съезд(?:а|е|у|ом)?|"
r"конгресс(?:а|е|у|ом)?"
r")\b(?:\s+[A-Za-zА-Яа-я0-9][A-Za-zА-Яа-я0-9\-_/.]{1,40}){0,6}",
flags=re.IGNORECASE,
)
_QUOTED_EVENT_PATTERN = re.compile(
r"(?:мероприят(?:ие|ия|ию|ием)|событ(?:ие|ия|ию|ием)|"
r"конференц(?:ия|ии|ию|ией)?|форум(?:а|е|у|ом)?|"
r"выставк(?:а|и|е|у|ой)?|фестивал(?:ь|я|е|ю|ем)?)"
r"[^\n\"«»]{0,40}[«\"]([^»\"\n]{3,120})[»\"]",
flags=re.IGNORECASE,
)
def _normalize_event(value: str) -> str:
normalized = " ".join(value.strip().split()).strip(".,;:!?()[]{}")
return normalized.lower()
def extract_years_from_text(text: str) -> List[int]:
"""Extract unique years from text as integers."""
if not text:
return []
years = {int(match.group(0)) for match in _YEAR_PATTERN.finditer(text)}
return sorted(years)
def extract_russian_event_names(text: str) -> List[str]:
"""
Extract likely Russian event names from text using heuristic regex rules.
Returns normalized event phrases in lowercase.
"""
if not text:
return []
events: List[str] = []
seen = set()
for match in _EVENT_PHRASE_PATTERN.finditer(text):
candidate = _normalize_event(match.group(0))
if len(candidate) < 6:
continue
if not any(keyword in candidate for keyword in _EVENT_KEYWORDS):
continue
if candidate not in seen:
events.append(candidate)
seen.add(candidate)
for match in _QUOTED_EVENT_PATTERN.finditer(text):
quoted = _normalize_event(match.group(1))
if len(quoted) < 3:
continue
if quoted not in seen:
events.append(quoted)
seen.add(quoted)
return events